USER MANUAL

Version 4.0

22.11.2007

Antonija Mitrovic
Brent Martin
Pramuditha Suraweera
Nancy Milik
Jay Holland
Konstantin Zakhar ov

Intelligent Computer Tutoring Group
University of Canterbury
Christchurch, New Zealand

Contents

IS 0) T T PSP 3
IO [01 o T (U Tod Ao o I PSSP 5
2.L0gging ON 0 ASPIRE ... ceemm et e e e e e e e e e e 6
T I (= AN E 1 g [0 o T o 0 Tod =L 8
3.1. Modelling domain StIUCTUIEcocvuniiiiicceeme e e e 9
3.2. Composing the domain ontology.........coeuuieieieeii i 12
3.2.1. Ontology DeVelOPMENLccooviiiieeeeeee e e 12
3.2.2. ONtOIOGY WOIKSPACEuueeiiiieeeee e s e e eae e e et e e e e et e e e et e e e e e eennnas 13
3.3. Modeling the problem/solution StrUCtUreS..........ccuueiieiiiiieiiiee e, 22
3.3.1. Modeling the solution structure for non-procedurddstas...............cccocceevves 23
3.3.2. Modelling the solution structure for procedural taskS............c..cccevieiivinenn. 24
3.4. Designing the student iNterfaceccommmmeeeiieeeiiiie e 26
3.5. Problem/Solution EQITOr...........oiiiiiiiiiceemmm e 29
3.5.1. Selecting a Problem SEet.........coouuiiii e 30
3.5.2. AddINg ProbIEMIScoeii e 30
3.5.3. AddING SOIULIONSccviiciiii e e e s 34
3.5.4. Re-arranging problemscoouiiiiie e 37
3.6. Generating SyntactiC CONSIIAINTSoceemmeerieeiii e e 38
3.7. Generating SEMAaNtiC CONSIIAINTScoccceeeeeei e eeeiie e e e e e e e e eeees 39
3.8. Deploying the tutoring SYSIEMSuuiiii e e e e 40
3.9. Additional Pages for DEVEIOPEISoiiiceeee e e e 42
NS |] = IV (o PSSP 42
4.1. Logging iNt0 ASPIRE-TULOuuiiiiii e et et e e e e e et e e 43
A N 0 411] 3 €= (o] TR 43
T T =T T o T RSP 50
4.3.1. Group ManagemMENT......ccuuiiiiiie et e et e e e ees 50
4.3.2. AssSigning DOMAINS 10 GrOUPSuuevvrieeiiimmeeeee et e eeeae e e eetn e e e eai e eeannaeeees 51
4.3.3. Specifying Pedagogical SettingsS.........c.covvoeeeeeeiiiie e 53
4.3.4. Assigning Pedagogical Settings to Students.......cccceeeeeiviieiiiiii e 55
4.3.5. REqUESHING ACLIONciiiiieeii e e e e e e e e e e 58
S 18 o (= o | S USSP 59
T B 1Y (o] 1= P 61
T 7] o Tox (1] T] o PRSPPI 61
B. RETEIEINCES ... ettt e e e et e e e e e eaa e e e e e e et e e e e e eaeaas 61
Index 65

List of F

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
problem sets
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.

igures
The Architecture Of ASPIRE.........oooo e 5
The LOQIN PAge.o eemee e e e e e e e e e aaans 6
The Home Page on ASPIRE-AULNOT ... e 8
The Architecture of ASPIRE-AULNOTccooeeiiiiii e 9
The Domain DetailsS PAge.........covuuuieeeeeie e ea e eees 10
A domain with a repeatable step (Equation-Solving)............cccoeevvviieeviiineeennnn. 10
Backup and Restore facilityuveeeeiiiiii e 11
The ontology of the Fractions domainooeeviiiiciiii e, 13
(@]9100] (070 AV 0] £ 16 0 = Lo - PP 14
Ontology Workspace showing the Fractions oggolo...............ccccoeeeviiieeennnnn. 15
yaXo (o [190 = 0 U= 11V (o] P 16
Specifying a range of Valuescoceeeemeiiiii i 16
Adding a property of type Boolean..........cccceeiiiiiiiiiiiiiec e 17
Adding a property of type symbol.........cocceee i 17
Slots of the NUMDEr CONCEPL e e e eeeiieee e e e eae e 18
Inherited and local Propertiesccceeeereeiii e e, 19
Adding a relatioNSNIPcoovue e 20
Specifying a set of concepts for a relationship...........cccooeevieiiiiiiieneeeen, 20
Specifying a free-text relationship..........cccceeiiiiiiiii e, 21
Properties and relationships of the Fractionegin................c.cccveveiiiiiieeennnnnn. 21
Initial state of the problem/solution repres@mdbr the SQL queries domain .. 22
Initial state of the problem/solution repres@mdor the Fractions domain 23
Specifying the solution structure for a non-procetastl................................. 24
The solution structure with the initial comporsg&cifiedcccccceeviieennnnn. 25
The complete solution structure for fractidait@on...................cccoeeeviiiieiinee, 25
Reusing components from Previous SLEPS.....ommmmmmrseeerrrnieeeriiieeeesiseeessnneeens 20
The initial interface for the Mechanics domain.............ccoooevvvviiiiiieniennnnnn. 27.
Specifying an applet to replace the default agerf...................cooeiiiinnnnnnn. 28
Uploading @pPIELScovuieiie e 28
Selecting APPIELSiiee e 29
The initial state of the Problem EditOr . ..oocvvviiiiiiiiiieeeee e 29
The initial state of the problem editor fordbenain which contains several
... 30
The selection of a problem Set........coeeei e 30
Adding a NeW Problemo 31
Adding a problem StatemMENt.............. .o e eeeerie e e 31
Adding a fraction addition problem........ .o, 32
Specifying the structure of problems with threepom@nts..................ccoeeeee. 32
Adding problem-specific COMPONENLSmmeeneeeeeiiieeeeie e e 33
Adding problem-specific instructions for a step...........cccceeeevviiiiiiiiiieiiieeee, 34
paXo (o [190 = TR0] (V)4 o] o PR 34
Specifying the ideal SOIUtIONcoiceee e, 35
Entering a solution to problem 2 ..., 36
Deleting @ SOIULIONcoovei e e e e 37
VIEWING ProbIEMS .. .ot e 37
The initial state of the Syntax Constraint page...........ccccoeevvvivieviiineeeinnnnnn. 38
Generated syntactic CONSLIaINtScccuueieiiiiii e e 39

Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.

Generating semantiC CONSLIaINtScccuuviiiiiiiiieiie e 40
Deploying @ dOmMaiN.........cooiiuiiiiiicceee e e e 40
Successful deployment of a domaincccccooiiiiiiiiii i, 41
The Deployment page with warningscoccceevii i 41
DOMAIN WItN ITOIS ...t e e e e e eeeees 41
The architecture Of ASPIRE-TULONcorenieeeeeiiiiiee e 43
The administrator NOME PAJEcovvvieiii e 44
The User Management PAQE......... ... cammmmmmnseeernneeeenneereiiaaesennnaesennaeennnns 45
Adding multiple USErs at ONCEcoceeueeiiiii e 46
Retrieving information about eXiStiNng USErS . evvneeeeriiieeiiiieeeeiiineeennnnnennn 47
The AffillatioNS PAGEoeiei e e e e a7
The ITS Management PAgEcevuuuieeeemeer e eeeieee e e e e e e e e e eenans 48
LI LS o T0 TS o 7= Vo L= PSP 49
The Group Management PAJEcmmmmmmcerneeeeeieeeesnaeeesiaeeeeneeeennns 49
The Teacher HOME Page i iceemmme et eeea 50
The Group ASSIGNMENE PAgE..........uuieeeeeeee e e e 51
The Set DOMAINS PAQEccovviiiiiiiceeeee et eeee e 52
The modified Set DOMaiNs Pagecucevveiiiiiiiiiiieeeeeeee e 53
Specifying pedagogical SettiNgSccovuiireiiiiieii e 54
A group with two sets of pedagogical settings...........cccooeevviiiiiiiineiieeeeeeen. 56
Assigning pedagogical settings to StudentS.......ccceeuviiiiiiiieiiiiii e 57
Random assignment of pedagogical settings to students.................c......... 58
The Request ACLION PAJEcoevvu i ceeeeee e e e e aeee 59
The Student HOME Page.........cooviiii e 60
The problem-solving interface for an instructiieahain..................cccccccevvnnn... 60

1. Introduction

ASPIRE is an authoring system that supports teachersvislogéng Intelligent Tutoring Systems
(ITSs) for their courses. This document is a user maitual;aimed at authors, i.e. domain experts
who want to develop ITSs, and do not necessarily have exgerin computer programming and/or
ITSs. The document explains how to use different componemASPBIRE, but it will not teach the
basic concepts underlying ITSs. For more information abounéoessary steps in building ITSs,
please consult our training materi@he Authoring Primér

Intelligent Tutoring Systems are knowledge-based, adaptiversyshe goal of which is to simulate
the behaviour of a good human teacher. These systemslliygigaport the student while learning
problem-solving skills in a particular instructional domaim A'S tracks the student’s behaviour,
analyses the behavioural data and produces/maintains a ofidkelstudent’s knowledge. This model
is later used to adapt instructional sessions towardsethds, learning abilities and preferences of the
student. ITSs are knowledge-based because they contain éxphpitesented domain knowledge,
which can be used to analyse students’ solutions agaimdtor to solve problems given to students.
The generated student model is used to tailor pedagogicaliatesi such as selecting/generating
problems and feedback.

Numerous ITSs have been developed, but only a very smalberunf them are used in real
classrooms. This problem comes from the fact that ITS€@mplex systems, which require a lot of
time, resources and knowledge to be developed. Some researstimate the time needed to develop
one hour of instruction within an ITS to be around 300 hourss thérefore not surprising that
authoring systems are sorely needed in the area of RUfisoring systems support and/or automate
the process of ITS development, by making it possible fmmacomputer specialist to develop ITSs.

The ASPIRE project is funded by the e-Learning Collabordbgeelopment Fund grants 502 and
592. ASPIRE supports the process of developing ITSs by automatimg tasks, and supporting the

remaining tasks, thus making it possible for tertiargheas with little background in programming

and Artificial Intelligence to develop systems for thaurses. The resulting educational systems will
overcome the deficiencies of existing distance learning cearsd support deep learning.

ASPIRE consists of ASPIRE-Author, the authoring server, A8BIRE-Tutor, the tutoring server,
which delivers the resulting ITSs to students (see FigurASPIRE-Author makes it possible for the
human expert (the author) to describe the instructional domad the tasks the students will be
performing, as well as to specify problems and their golat Once an ITS has been specified in
ASPIRE-Author, the tutoring server delivers the developeasysh the student.

= =

Author Browser/Client Student Browser/Client

ASFIRE-Author ASPIRE-Tutor
{Authoring Server) (Tutoring Servear)

Figure 1. The Architecture of ASPIRE

This document describes the authoring side of ASPIRE fiks start by describing the login
procedure in Section 2. Section 3 describes the architeahgadunctionality of ASPIRE-Author,
followed by detailed instructions for authoring new intelligautioring systems. In Section 4, we
briefly present the architecture of ASPIRE-Tutor, and tilisouss the actions that can be performed
by various types of users. Conclusions are given in Sestitmllowed by a list of useful references.

2. Logging on to ASPIRE

ASPIRE is a Web-enabled system and therefore you wililldthe work while developing an ITS
within a web browser. We recommend Firefox (version 2 or abmvhbijternet Explorer (version 6 or
above) as the web browser. Older versions of browsers maglisplay all pages correctly. The
resolution of your display should be set at 1024x768 or higher. Lieeselutions are not supported.
The browser window needs to maximized in order to enable the fmbesdisplayed properly. Java
Runtime Environment (version 5 or above) should also be iedtati the machine.

Figure 2 shows the Login page, which is availablbtft://aspire.cosc.canterbury.ac.nz:8001you
do not have account for ASPIRE, click tRegisterink.

a ASPIRE-Tutor Login - Microsoft Internet Explorer

=1l
File Edit Wiew Favorites Tools Help | .;',',"
7 | A Y T U e SIS R &t 2

@Back b @ b \ﬂ IELI | / Search Yt Favorites Q‘?‘ R i = = _l ﬁ d

Address I@ http:/faspire. cosc, cankerbury, ac.nz: 5001 flogin L’ = Go ||-il'lk5 =

=

...

| ASPTRE-Tutor Login

Login: |

Password: |

Affiliation: |ictg j
Login | Reset |

| Register Forgot vour password?

s ASPIRE is best viewed with Firefox 2 or newer , Internet Explorer & or newer , Clder browsers may not display all
pages correctly,

e Recommended screen resolution is 1024%768 px or higher, The browser window needs to be mazximised.

e Java 2 Buntime Environment (J2REY (version 5 or newer) must be installed on your machine.

[&] l_l_l_l_’_|0 Trusted sites

=

Figure 2. The Login Page

To log in, you need to have a valid usercode, password alidtiaffi. If you cannot remember your
password, the password will be emailed to you if you dhedorgot your passwordink and specify
all the necessary information.

Once you have successfully logged on, you will seeHibime page. If you have logged on with an
author usercode, the home page will containJtivap to Authoring Toolknk, which will take you to
ASPIRE-Author. The same can be achieved by switching td\titleoring tab. The other tabs are
described in Section 4 of this document.

The Home page on ASPIRE-Author, shown in Figure 3, allows you to spétstyuctional domain
(i.e. ITS) you want to work on. At the top of the page, dhigra table showing names and descriptions
of all domains you have previously worked on. If you arequiSPIRE for the first time, this table
will be empty. In that case, you need to add a new dorailadd a new domain, you need to specify
a unigue name, a description, and then clickftiébutton. The newly created domain will be shown
in the table at the top of the page. You can then open theérdoma

To select a domain from the domain table, click on the wasidenain. In the screenshat Figure 3,

the author has selected tReaction Additiondomain, and the page shows all steps of the authoring
process. Clicking the step line takes you to the appropriatetpggeform the task; note that this can
also be achieved by clicking the appropriate tab. The stepsh#ive been completed are shown in
blue, while the steps that have not been attempted are shdviack. Some steps may be disabled
(coloured grey) as they cannot be attempted until some stéyeis complete.

This page also allows you to delete an existing domainglegting it from the list of domains you
have created. It is also possible to Save/Load a domfnitide in XML format. Saving the domain
has the result of storing the domain (in the XML represiemjabn the tutoring server. THeoad
function is available for loading pre-existing domains dnASPIRE-Author. In other words, if the
XML representation of a domain exists on the tutoring seiivean be loaded into ASPIRE-Tutor.
Once a domain is loaded, it appears under the domains tiet bfome page.

At the bottom of the page, there is thegoutlink to use when you want to logout from ASPIRE-
Author, which appears at the end of each page in the system.

! Please note that the type of account determines whishwauld be available (i.e. visible). The screensimots
this manual were generated using a developer accourgx&mple, th@est ConstrainandDomain Functions
tabs are only available to developers.

Home | Domain || Dntology ” Problem Structure ” Student Interface H Problem Editor H Syntax C i H i C4 i H Domain functions H Test Constraints ” ‘ Logs

Domains List

hame Description
- Mechanics The tutar for ENGR102

5. &dd Problems and Solutions
6. Generatefdiew Syntax Constraints

+ chemistry Balance chemical equations

add new domain

Name

Descrlptmnl Add

Delete domain

IMechanics hd

Store/toad Domain Definition

Mame
Save oad

Powered byASt‘ 25

Figure 3. The Home Page on ASPIRE-Author

3. The Authoring Process

The development of the domain model is the most complex anelctmsuming task in the
development of an ITS. ASPIRE supports this process by atibgsme of the tasks required, and
providing support for authors. The authoring process in ASRIREIsts of the following eight steps:

Modelling the domain structure;

Composing the domain ontology;

Modelling the problem and solution structures;
Designing the student interface;

Adding problems and solutions;

Generating syntax constraints;

Generating semantic constraints;

Deploying the domain.

N~ WNE

The architecture of ASPIRE-Author is illustrated in FigdreThis manual describes some of the
functions of various components, but does not provide the detailimpliementation. The
Authoring Controller is the central component which manages the authoring proaeds
communication between the various components of ASPIRE-AutheD@main Structure Modeller
supports step 1 of the authoring process, by allowing the auttspretify the general characteristics
of the chosen instructional domain. This information isext as the initial part of the domain model.
The author then specifies the domain ontology using @meology Workspacgstep 2). The
Problem/Solution Structure Modellallows the author to specify the structure of problems and
solutions in the domain (step 3). TBe&udent Interface Buildesupports the author in specifying the
initial version of the student interface (step 4), whidh lve used to communicate with students. The
author uses thBroblem/Solution Editoto provide examples of problems and their solutions (step 5).

On the basis of all specified information, tBenstraint Generatodevelops the domain knowledge

necessary for the ITS to be able to analyse studentdosslstep 6). This knowledge is represented
in terms of constraints, which describe the syntax andahmantics of the instructional domain. The
generated constraints are validated in step 7. The dedidpmain models are maintained by the
Domain Model Manager

Web Interface

Domain) Student Problem/ Constraint
Structure “?D’:g“gge ;[E’E:ﬁ;‘;ﬁﬂggﬁgr Interface Solution Validation/
Modeller a Builder Editor Authoring Interface
'*.__ Iy _f,f I" '
e Constraint Generator
Authoring Controller '
- Syntax | Semantic
Jll"'-.____
) A
4| Constraint
validator
¥ i
S . v v
Domain Model
0 £y

Figure 4. The Architecture of ASPIRE-Author

You will now learn how to perform each of these steps witi8IPIRE-Author.

3.1. Modelling domain structure

The domain structure needs to be defined for each instructonain. You can view/specify details
of domain structure for the currently selected domain lokicky on theDonai n tab of the authoring
interface.

The Domain page illustrated in Figure 5 shows the details ofRraxtions domain. The name and
description of the selected domain are shown at the topeopage. This page also allows you to
modify the description of the domain, without having to go badké previous page. Note, however,
that the domain name cannot be changed.

TheTypeof the domain refers to the nature of the task studelitsenperforming in the ITS. ASPIRE
offers two possibilities: procedural or non-procedurakgas\ procedural task contains a number of
steps that need to be performed in a specified orderFiactionsdomain contains procedural tasks:
the student will need to specify the least common denomiriatathe two fractions to be added
initially, and then (if necessary) modify the fractiom$ien in step 4, the student needs to add the two
fractions, and finally, in step 5, the resulting fractioight need to be simplified. Therefore, the task
of adding fractions is a procedural one (notice thatPteeedural option is selected in Figure 5). If
tasks for the chosen domain do not require such a sefpsf sigt rather students can perform actions
in any order, select a non-procedural task.

For a procedural task, it is necessary to add a step$. Once you specify that the task is procedural,
ASPIRE will add a table showing steps, which is initiallypty. To add a step, click on the + button,

which will add a new row to the table. Each step has guenhumber, generated automatically. The
step name is what the students will see when they solvéepisbas the label assigned to one of the

interface components. Therefore it is important to giaaningful names to steps. The description of
the step provides additional information to the student.

| Home || Domain || Ontology || Problem Structure || Student Interface ” Problem Editor ” Syntax Constraints ” Semantic Constraints H Domain functions || Test Constraints ” | Logs

Domain Details

Name Fraction addition Backup and Restore

Description [adding two fractions

Type " Non-Procedural * Procedural

Procedural Steps
MName Task Description New Page Pageno Problem Specific Instruction Repeatable

1 |cD [Specify the lowest comr '3 1 O O

r 2 |Frachun1 IMud\fyfracUunH\fnecs (m] 1 O O

I 3 [Fraction2 [Modify fraction 2 (f nece [} 1 O O

o4 ISum lAdd the two fractions [m} 1 O [}

I© 5 [Reduced sum [fnecessary. reduce the [} 1 O O

Problem Sets
MName Description Scaffolding

1 Jsen [Problem set1 [

Powered byMS K RE

Figure 5. The Domain Details page

If the step is to be shown to the student on a new Web paki¢h¢iNew Pagebox. If this option is
ticked, there will be a separate Web page for this steprridtively, you may specify several steps to
be shown to the student on the same Web page. All steps dfefirted Fractions domain in Figure 5
will be shown to the student on the same page.

To delete a step, select it first by ticking the box athtbginning of the corresponding row, and then
click the — button. To change the order of the steps, tickdkeat the beginning of a row that you

want to bring upward, and then click the » button, as mamgstas necessary to bring the step at the
desired position.

As specified previously, the task description will be showthe student for each problem. If you
want to have additional problem-specific instructionsdiog or more steps, tick tiroblem Specific
Instructionbox for the appropriate steps.

Home | Domain H Ontology H Problem Structure H Student Interface H Problem Editor || Syntax Constraints H Semantic Constraints || Domain functions || Test Constraints H ‘ Logs

Domain Details

Name Mechanics Backup and Restore

Description [The tutor for ENGR102

Type " Non-Procedural & Procedural

Procedural Steps = +
MName Task Description New Page Pageno Problem Specific Instruction Repeatable

" 1 [Force diagram [Draw the diagram with a ~ 1 O O

[T 2 |Equation-Solving [Compute the necessary ~ 2 v v

Problem Sets
Name Description Scaffolding

O 1 jeett |Problem set1 |

powered byMS ¥ RE

Figure 6. A domain with a repeatable step (Equation-Solving)

TheRepeatabldox allows the author to specify that the same step mghefeated several times. If
this box is not selected, ASPIRE will assume that the & to be done only once by a student. When

10

the box is ticked, it will be possible to have severahtiens of the same step. FigureA6domain
with arepeatable step (Equation-Solving) illustrates a procedural domain with two steps, the second
one being repeatable. Please note that a repeatabis ahepys the only step on a page.

The bottom part of the page is used to specify sets of gamsbfor students to solve. In certain
domains, problems can be classified into groups, contaprisigiems that require the same skill. For
example, in the domain of fractions, we might identify dédfe sets of problems, dealing with fraction
addition, fraction multiplication etc. In the domain of Esbli different problem sets might include
turning verbs into nouns, adjective comparisons, past tehserbs, work endings etc. Initially,
ASPIRE-Author shows only one problem set. In Figure 5, trseomlly one set of problems. You can
modify the name and description of the problem set. Pleasetimat the scaffolding has not been
implemented yet. To add/delete problem sets, use the ténbut

Once you have finished describing the domain, steps and probigntlick theSave structurdutton.
This will lead you to th®omain Ontologypage, which is described in the next section.

Finally, theBackup and Restorgutton facilitates experimenting with the domain. It all@avsersion

of the domain to be saved under a name chosen by the authen. thé button is clicked, a pop up
window appears with two sections: back up and restore (gaeeF7). The back up section allows the
current state of the domain to be saved. The author capsabsae the current state of the domain,
and make modification to the domain. If the author wants thagi to the saved state of the domain,

loosing all newer changes, the appropriate label from thereedtop down menu has to be selected
and 'restore’ should be clicked.

2} Author Domain - Microsoft Internet Explorer oy [=]
File Edit Wiew Favorkes Tools Help | ;‘;’
OBack - - Iﬂ ﬂ o ‘) search ¢ Favorites & | = ﬁ .A\i
Address Iéj http://aspire, cosc,canterbury ac.nz: B006/domain-details j a Go ‘ Links **
-

Logs
Domain Details

Name Fraction addition Backup and Restore Domain Models

Description [4dding two fractions Backup O in Model r
LSCRLUD Dormain Mode!

=3

Type " Non-Procedural @ Procedural

Name
Restore Domain Model
1 |co [Specify the lowest camr
Mame|a =
O [Fraction [Modify fraction 1 (ifnece
O [Fraction2 [Modify fraction 2 (if nece O 1 C
[[Sum [df the two fractions l 1 I
[[Feduced sum [t necessany: reduce the l 1 I
1 et [Prablem set1
| Savestructure |
Powered h\d\':_l, iEE‘ -
4| | »
&) Done

[T T [[e

Figure 7. Backup and Restore facility

11

3.2. Composing the domain ontology

An ontology describes the structure of the domain by showing tbie bdamain concepts, their
properties and the relationships between concepts. A wadeBpted definition is that an ontology is a
specification of a formalisation (Gruber, 1993); in otherdspit is an explicit, formal specification of
the domain vocabulary which presents a common understanding «f tbpt can be communicated
between users and applications. An ontology thus enablasegtictople involved to speak the same
language, supporting knowledge sharing by applications and reusentdlogy makes domain
assumptions explicit, so that it is easier to changedh&ain description, as well as to understand and
update existing data. An important feature of ontologig¢kasthey separate domain knowledge from
operational knowledge, in the same way in which a datadwdesma is separated from the actual data
stored in a database, thus introducing a high leviéxbility.

Initially, ontologies have been introduced within the field Artificial Intelligence, but are now
becoming widely used on the World Wide Web, as the foundatioméoEémantic Web. In contrast
to a large number of documents linked together, a Semdfelr is a huge network of machine-
understandable and machine-processable human knowledge (Decher 26100@; Hendler, 2001,
2005). The WWW Consortium (W3C) has proposed several langé@ogescoding knowledge on the
Web so that it can be used by intelligent agents to impitmie performance. Key application areas of
ontologies include e-commerce and search engines, among others.

In simple terms, an ontology represents a hierarchicahixgtion of all important concepts in a given
domain. Ontologies play a crucial role in ASPIRE. As thal @b ASPIRE is to make it possible for
teachers to develop ITSs for their courses, the authoring pregepsrted by ASPIRE relies on the
domain ontology. Instead of asking the domain author (i.e. the t¢aoheanually encode domain
knowledge using a specific knowledge representation language, ASRlREes the author to
describe the instructional domain by specifying the domain @gyol This is a much simpler
requirement, as the author does not have to learn the knowleggesentation language and the
specifics of a particular approach to using domain models.h€ea@re already aware of domain
ontologies, even though they might have a simplified (hforimal) representation. In addition to
specifying the domain ontology, the author is required to prowdeples of problems and their
solutions. ASPIRE-Author then analyses all three sourcdsnofvledge (ontology, problems and
solutions), and induces the domain model (represented is wrenset of constraints, as discussed in
Sections 3.6 and 3.7).

The ontology composition stage is the second phase of theriagtippocess. During this stage, the
author develops the domain ontology using the Ontology Worksp&ieh 18 one of the components
of ASPIRE-Author (as illustrated in Figure 4). If you areating a new domain model (i.e. a new
ITS), you would be taken to the Ontology Workspace aftar gpecify the domain structure.
Alternatively, you can get the Ontology Workspace by clicking®ntology tab of the main interface.

In Section 3.2.1, we discuss the process of ontology developmeaygneral. Section 3.2.2 then
discusses the Ontology Workspace, the component which supporsittier while specifying the
ontology. The following subsections describe the steps in damgl@n ontology, and illustrate how
they are performed in the Ontology Workspace.

3.2.1. Ontology Development

There is no silver bullet when it comes to ontology developnsntilar to other design tasks,
ontology development is under-specified and ambiguous. Therdfare is neither one correct
approach to ontology development, nor a single best ontologg fearticular domain (Noy and
McGuinness, 2001). In order to specify a domain ontology, thieoauteeds to specify domain
concepts, their properties and relationships between ptndeach ontology will reflect the author’s
subjective view of the domain, and of the importance of doroaittepts. The process is always

12

iterative. Initially, it is necessary to decide on thepgcof the ontology - how much of the domain will
it cover? Generally, it is possible to reuse existing ogiek available on the Web, although there are
a few ontologies available for educational domains tratmectly applicable. In ASPIRE, we assume
that authors will develop their own ontologies from scratch.

When developing an ontology, it is necessary to identify miygoitant domain concepts. Roughly
speaking, these concepts will include all types of entitpgsearing in the domain that students need to
know about. When developing the ontology, it is useful to think atheuinterface the students will
use to solve the problem; all the components appearing in #réate# need to be described in the
ontology as well.

Some domain concepts will be arranged into a taxonomy (i.biearchy, a tree), using the
specialisation/generalisation relationship. This relatignghialso commonly referred to as tisea
relationship, or tha-kind-ofrelationship. Taxonomy can be specified using a top-down orntanpot
up approach, or a combination of the two, which is probabht wmmmon. When using the top-down
approach, the ontology is developed starting from the mosrgleconcepts, which are then refined
into subclasses. The bottom-up approach, on the other hand, febm specific concepts which are
generalised into superclasses. Every concept in the ontdoigyportant because of its properties
and/or relationships to other concepts; therefore, pregeatid relationships need to be defined. The
properties of a concept will be inherited by all of its sutoepts.

In this manual, we use fraction addition as an exampleugtginal domain, to illustrate the various
functions supported by ASPIRE. When learning about fractiortiaddstudents should know about
different kinds of numbers (whole numbers and fractionbgrefore, this suggests that the Number
concept should be the root of the hierarchy, with whole ntsndiled fractions as specific subtypes.
Furthermore, there are different kinds of fractions: prdgections have numerators that are smaller
than their denominators, while the opposite is true for apgr fractions. Improper fractions can be
further simplified. Based on this analysis, the ontolamttiis domain can be the one shown in Figure
8. Note that other possibilities exist for representimg same domain concepts. Also, we have not
discussed properties and relationships between theseptsindgey will be introduced in Section
3.2.2.

Num ber
Wﬁble Fré@f;ion

LCD Impl‘aper Reduced
Figure 8. The ontology of the Fractions domain

There are many ontology-development tools available, most pomilawhich are Protege
(http://protege.stanford.edu/ Ontolingua [ittp://www.ksl.stanford.edu/software/ontolingua/and
OIlEd (http://oiled.man.ac.uk/ These tools support different ontology languages and vagynmstof
their expressiveness, reasoning abilities and support for A&IP$RE contains an Ontology tool that
will allow you to specify the ontology for your domain.

3.2.2. Ontology Wor kspace

After logging in, specifying the domain to work with and gdeting the definition of a domain, the
author will be taken to the Ontology Workspace, which igailly empty (as in Figure 9). Note that
the name of the instructional domain is shown at the topeopaige. To show different features of
Ontology Workspace, we will use the ontology shown in Figure 8.

13

In ASPIRE, ontologies are represented in terms asrhlges, in which concepts are related via the
'is-a' relationship. The Ontology Workspace (Figure 9) is aphgcal ontology-development tool,
which supports a rich knowledge model. The taxonomy is represendesedsf concepts (rectangular
boxes) connected with arrows, representingishe relationship. Note that the bar at the top of the
drawing area contains a set of tools that can be usdrdwothe ontology and manage it. The rectangle
and arrow tools are used to draw the hierarchy (i.draw concepts and relationships between them).
In addition to these two tools, there is also a tool fatistha new ontology (the empty page tool), the
tool for deleting the currently select element of the logiy (the trash can tool), the tools for
undoing/redoing the last action, the tool for saving the ontolsiggwn as diskette) and the finish
tool, which has the effect of saving the ontology and lea&BBIRE (shown as the finish flag). When
you position the mouse over a tool without clicking on it, you wét a tool tip - a short text
explaining what the tool does. Below this tool bar, there @raaing pane, where the domain
hierarchy can be drawn.

To define the ontology, it is necessary to create the famhtilomain concepts, and also to specify
their properties and relationships. In our case, we sitirtthe Numberconcept. To create a concept,
select the box tool by clicking on it, and then click on the digwiane. This creates a box; you can
now type the name of the concept. Alternatively, you cak thie rectangle tool, then click and drag
on the drawing pane to create a box of the desired sizeae the concept, double click on the box.
It is also possible to change the sizes of previously dkfioses, by selecting the handles (shown as
crosses on boxes, which turn into large dots when a s®tasted), and dragging the box. To delete a
component, click on it and then press the Delete key, anatteely, click the garbage can tool on the
toolbar.

| Home || pomain | ontotogy | I | | | I I | Il oas

Domain Ontology (Domain - Fraction addition)

=~ W (= | &y

Select concept to view details

Powered hyASrEE
Figure 9. Ontology Workspace

The arrow graphically represent tisea relationship. The direction of the arrow should be fitwa

subconcept towards a concept. To draw the arrow, click otothén the toolbar, and then click on
the concept and drag towards the subconcept. The Ontology Worlessists in connecting concepts
with arrows by automatically connecting endpoints of thevamith a concept handle within a range

14

of 5 pixels. Figure 10 shows the screenshot of the Ontologkspace after the whole hierarchy has
been created.

Home || Domain || Ontology || Problem stucture || I 1 Il I I I [Logs
Domain Ontology (Domain - Fraction addition)
=1hN G (0] |2 ™ Ay

| mproper fraction | {_Reduced fraction_|

>
4] 1D
Description | mbstract [Slots o

Name Type Min [IEYS

ND

Powered hyhsr EE

Figure 10. Ontology Workspace showing the Fractions ontology

When the author selects a concept from the taxonomy, its dmtailshown in the bottom section of
the Ontology Workspace. For example, Figure 10 shows a situati@m the currently selected
concept ilNumber The details panel includes a text area for adding the desaorigtihe concept and
a table that lists the concept's slots. The descriptioa obncept allows the author to enter an
explanation for the chosen concept. This description is onfyludee the author him/herself: it is not
used by ASPIRE, and may help the author to provide additiofuahiation.

TheAbstractbox allows the author to specify that the selected consept abstract concept. Abstract
concepts are those that the student will not directly nstheir solutions; such concepts might
represent higher-level generalizations of the concepts thanssudill manipulate with directly. In
other words, abstract concepts cannot be instantiatealiitions. As they do not appear in solutions, a
domain model does not contain any constraints for such conéapt®xample, the domain model
would not check for the existence of items that ar@nofibstract concept type.

Slots can be either properties of a concept that destirdtieconcept, or relationships with other
concepts in the ontology. To add a slot, click ﬂbutton in the details panel. That results in a pop-
up window, as one shown in Figure 11. Tgbutton deletes the currently selected slot from the

table, while them button brings up the slot definition window, so that the autaorrodify it.
When adding a new slot, the name and type of a slot musffinedielrhe name of each slot must be
unigue. The type of the slot specifies whether it isapgnty or a relationship. A property describes

one particular feature of the concept. On the other handatoralhip is an association between the
current concept and some other concept from the ontology.

15

In Figure 11, the author is specifying the Value propertheNumberconcept. A property may have
values of type Boolean, integer (i.e. whole numbesB)ng, float, or symbol. To see the various
options for Type, click on the icon on the rightAofy, which displays the drop-down list. Select the
appropriate value from the menu. When specifying the typhed¥alue property, the author selects
Float (meaning the number can have a real value). Howevetygbef a property does not have to be
specified (i.e. thényoption may be used).

JRI=TES
Mame [value | [] oOptional atlesst |1
Type |&ny (w| [Muttiple stmost [1

Ay I —

Eioolesn g

Flost

Irtecyer

=tring

=y ikl

Felationshigp Cone
I.Ja\ra Applet Window

Figure 11. Adding a new slot

The Optional checkbox allows the author to specify whether the slot i®mgdtor mandatory (i.e.,
whether there must exist a value of the property for evestamnce of the concept). An optional
property means that not all objects of this type véldna value for that property.

A property may have one or more values. For examplap@der can have only one value. However,
there are properties that can have more than one vatudtasieously. For example, an object might
have multiple colours. There are two ways to spebiy a property might have multiple values. If the
number of values is not known, but we know that there wilinoee than one value, it is enough to
check theMultiple box. On the other hand, if we know that a certain propegy have between one
and three values. To do that, enter 1 into the ‘agtlebox, and 3 into the “at most” box. Please note
that the default value of the “at least” and “at mdiX is 1 for all types of slots.

ASPIRE-Author also allows the author to specify a rarigealues that a property can take. Figure 12
illustrates a situation when the author is adding the ID prgpehich can take as its value any integer
in the range of 1 to 100. To specify the range, the authorsehtind 100 into the min and max boxes.
The ranges can be specified for properties of thewitlg types: integer, float and string.

=1o] x|
Mame D | [oOptional stleast [1
Type |Integer |v| |:| Multiple &t most |1
hir 1
bz 00|
Done
I-.la'n.ra Applet Window

Figure 12. Specifying a range of values

16

TheBooleantype allows only two values: true and false. When spexjfgi property of type Boolean,
instead of theat leastandat mostinput boxes, the author specifies the default value,etgctng
eitherTrueor Falsefrom the drop-down list, as shown in Figure 13.

=1k
Mame || | [] oOptional stleast [1
Type |Eh:u:nlean |v| |:| Multiple &t most |1
Detault -
True
Falze
Dane

I-.la'n.ra Applet Window

Figure 13. Adding a property of type Boolean

If the property is of type symbol, the author needs to eratmé¢he allowed values (Figure 14), by
entering them one at a time and clicking ﬂbutton. To delete a previously specified value, the

author needs to select it and click Ig button.

=

Mame [Sign | [oOptional stleast [1
Type |S‘:.fmhn:nl |v| [Mutiple at most |1

I 2]
T Add symbol

Cone

I-.la'n.ra Applet Window

Figure 14. Adding a property of type symbol

Figure 15.Slots of the Number concept shows the screenshot of the Ontology Workspace after one
property of theNumberconcept has been specified. The icon in the firstneolof the slots table
indicates whether the slot is a property or a relationsRijpperties are identified b ® and

relationships bY® . In Figure 15Valueis a property.

17

I Home I Domain I Ontology I Problem Structure I Student Interface I Problem Editor I Syntax Constraints I Semantic Constraints I Test Constraints _

Domain Ontology {Domain - Fractions)

=N

Reduced fraction

Impreper fraction

4]

< [»

Descrigtion | Slats @

Mame Type hin hdax
@Value Float

[HIMD

Logout

powered by ASK RE

Figure 15. Slots of the Number concept

All the properties defined for a concept would be inhefitgdts children (i.e. the concepts related to
it by the 'is-a' relationship). Figure lherited and local properties shows the same ontology with
Fraction as the selected concept. This concept inherit&/#hae property from theNumberconcept.
To specify that the properties are inherited, the Ontologyképace will put a different symbol in the
appropriate row of the slot table. In Figure 16, Engction concept has one inherited propenalue
and one local propertyNUmeratoy.

18

Home || Domain || Ontology || Problem Stucture || Student Interface || Problem Editor || Syntax Constraints || Semantic Constraints || Test Constraints

Domain Ontology (Domain - Fractions)

=N B @ [9C Elk

Reduced fraction

Improper fraction

[4]

4 [»
Description Slats o

Mame Twpe hdin (LR
alue Float

MHumerator Integer

(ojim

[IND

Powsred by ASE Re

Figure 16. Inherited and local properties

Note: This paragraph explains planned functionality that has not been implementédpyeperty

that is inherited from the parent concept may be modifiethéncurrent concept. For example,
consider theValue property defined for thé&Number concept. Whole number would inherit this
property from its parent; however, the value of a whole nuiish®ot float. To make this change, click

the unbutton. This will bring the Slot definition window, in whigjou redefine the type of the
property. Figure 3.1X shows the redefinégalue property for thaVhole numbeconcept.

Figure 3.1X. Redefined property

To specify a relationship between the currently selectattapt and another concept from the

ontology, click the‘J button in the Details frame, which brings up the slot défimitvindow. After
specifying the name of the slot, seleetationship as its type. Figure 17 shows thNamerator
relationship for thd-raction concept. Each fraction must have a numerator and a dertomiwaich
are whole numbers. Whole numbers have previously been deéfinde ontology. To specify the
numerator as a component of a fraction, it is heceseaspdcify the relationship betweénaction
andWhole Number In order to specify the related concept, select ammftom the drop-down list
of concepts, which lists all the concepts from the curreraiagy.

19

=1k
Plame |Numeratl:nr | [optional &t least |1
Type |He|a‘tin:nnship |v| |:| Multiple &t most |1
Related to | Whale number |w| [] List [] Freetext
Cone
I-.la'n.ra Applet Window

Figure 17. Adding a relationship

In some cases, a relationship may involve one of a set of conEeptexample, when specifying an
assignment (a statement that assigns a value toiabledy the author may specify that the allowed
concepts on the right-hand side are constants (e.g. "x wakiables (e.g. "x = y"), functions (e.g. "x
= max(a,b,c)") or arithmetic expressions (e.g. "X = y + BY enumerate concepts that can participate
in the relationship, tick theist tick box next to the concept list. ASPIRE-Author will shovahle
which will hold all selected concepts. Concepts can be daddethe container by selecting the
appropriate concept from the drop-down list, and clicking tletton. Figure 18 shows tlassigned
valuerelationship, when the first related concept has been dddetheNumberconcept).

RI=E
Plame |assigned walle | [oOptional st least D
Type |Relatin:nnship |v| |:| Muttiple at most D
Relstedto | ~ I List [Freetext
Murnber
Cone
I-.la'n.ra Applet Window

Figure 18. Specifying a set of concepts for a relationship

In certain domains, it may be the case that the studarithie typing in a large part of the solution.
In that case, it would be very complicated to spetiéydtructure of that part of the solution directly in
the ontology. In such cases, the author may specify thiat afsa certain concept is a relationship
with another concept, the structure of which is not going tddseribed further. Figure 19 illustrates
such a case. Thdauserelationship is related to the WHERE concept, and the ahtmticked the
Free textbox to let ASPIRE-Author know that the student would be typmghe content of this

concept.

20

EETEE =10l x|
Plame ||:Iause | [optional &t least |1
Type |He|a‘tin:nnship |v| |:| Multiple &t most |1
Relatedto |WWHERE |w | [] List Free text
Done
fJava Applet Window

Figure 19. Specifying a free-text relationship

Figure 20 shows the screenshot of the Ontology Workspace,thétiturrently selected concept
having both properties and relationships. The slots tabjdagis the type of the slot in the case of
properties, but for relationships it shows related concepts.

I Home I Domain I Ontology I Problem Stucture I Student Interface I Problem Editor I Syntax Constraints I Semantic Constraints I Test Constraints .

Domain Ontology {Domain - Fraction Addition)

=N =117

| »

Whole number

% Denominator l]i % MNominator 1]:

[4]

1] [

Description | Slots
Mame Type hdin g
P)|value Float -
(R)|Mominatoryvalue Morminator | =|
(R)|Denaminatorvalue Denaminatar =
L t
Seat Powered byASi" RE

Figure 20. Properties and relationships of the Fraction concept

21

3.3. Modeling the problem/solution structures

Once the domain ontology is defined and a problem set is esgiléttis necessary to specify the
problem structure and the solution structure. To achieve dliik, the Problem Structurgab. The
Problem and Solution Representatiosige will be shown next. Figure 21 shows the initial statkeof
problem/solution structure for the SQL queries domain, whieréi 22 shows the initial state for the
Fractions domain. The top portion of this page is used tdfglee problem structure

ASPIRE assumes that each problem will contain a problarensent. In addition to that, it is possible
to specify the task requirement - this is the descriptiahetask that will be given to students with
each problem, giving them additional instructions.

For example, in the fraction addition domain, the task remént may be "Add the following two
fractions:", while the problem statement will spedifg two fractions to be added (e.g. 1/5 + 2/3). As
another example, let us take a look at a language tutorhwhbittains a set of problems dealing with
turning verbs into nouns. All problems of this type wouldenthe same task requirement entered just
once by the author: “Turn the following verb into a noun”, amehteach verb would be entered
separately as the problem statement.

Problem and Solution Representation (Domain - SQL)

Problem structure

Task requirement (Relevant to all problems)

Frohlem statement 3

Problem Component
Label Type

¥
'
E

Solution structure
Solution Components
Label Concept Element Count Free Text

¥
'
E

Save structure

Powered byASl’ RE

Figure 21. Initial state of the problem/solution representation forSQ@. queries domain

To specify that there is such a task requirement, hisdi¢k box associated with the first element
(calledTask requiremetof the problem structure interface. The text for ttsk teequirement can be
added in the problem editor, when problems and their spkitare added (see Section 3.6). There is
no need to do anything about the second element (dailgallem statemeftas it is assumed that
every problem will have a specific problem statements Bhement is included in the interface to
make it obvious that a problem statement will always partof the problem specification.

22

| Home H Domain || Ontology || Problem S$tucture || Student Interface || Problem Editor H Syntax Constraints H Semantic Constraints || Domain functions H Test Constraints |

Problem and Solution Representation {(Domain - Fractions)

Problem structure

Task requirement (Relevant to all problems) M

Problem statement 7

Problem Component
Label Type

Solution structure

LCD: Solution Components
Label Concent Elernent Count Free Text

Fraction 1: Solution Components
Label Concept Elernent Cournt Free Teuxt

Fraction 2: Solution Components
Label Concept Element Count Free Text

Sum: Solution Components
Label Concept Element Count Free Test

Reduced sum: Solution Components
Label Concept Element Count Free Test
Save structure

Powerad byAErEE

Figure 22. Initial state of the problem/solution representation forRteetions domain

A problem may also contain a collection of sub-componentsatithimore information to the problem
statement. The problem components can be added into thlemproomponents table by clicking the +
button and removed using the — button. Clicking the + button rasulisnew row, which can be
populated to add a new problem component. Problem componentesarébed by their label and
type. The label is displayed in the student problem spliriterface next to the problem component.
Each component can be either textualk{ or graphical image. The components are problem-
specific, and are therefore specified when the probledefined, in the Problem Editor (see Section
3.6).

Next, it is necessary to specify the structure of the swluflhe solution structure is different for
declarative and procedural tasks.

3.3.1. Modeling the solution structure for non-procedural tasks

The initial state of the problem/solution structure for a-pmtedural domain (SQL queries) is shown
in Figure 21. As can be seen, there is nothing shown Buwlation structureas there are no steps
defined for this task.

The solution structure for a non-procedural task congita list of solution components. The
components can be added and removed in a manner similar tdditieraand removal of problem
components, by clicking the + and — buttons. Each solution compdasna label, the type of
elements it may hold (i.e. the concept from the domain ontolagy) the number of elements it may
hold Element Count Additionally, there is d&ree textbox for each component, which needs to be
ticked if the student can freely type the content ofatimponent. The free text type determines that
the component should be displayed in the student problem solvinfadeters a text box. Figure 23
shows the structure of solutions in the SQL domain. Each @platintains six components, defined in
terms of corresponding domain concepts. As can be seenHeofigtire, each component has exactly
one element, and is ffee texttype, which means that the student will be askedge tle content of
each component into a text box in the problem-solving irterfa

23

| Home || Domain || Ontology || Problem Structure H d. Interface || bl Editor || Syntax € i H 5 tic € i || Domain functions || Test Constraints |

Problem and Solution Representation {(Domain - SQL)

Problem structure

Task requirement (Relevant ta all prablems) [
Problem statement 3
Problem Gompanent
Label Type
Solution structure
Solution Components
Label Concept Elernent Count Free Text
I [sELECT SELECT [Choose item... = | PH| Exactly 1 =] #
r [FRom FROM [choose tem.. = | [Exacty 1 7] F
I~ fWHERE WHERE [Choose item... = | P Exactly 1 =] F
r [GrRoUP_Ev GROUP BY |Chnnse iterm lexamIW j 3
I [HAvING HAVING [Choose item... = | P Exactly 1 =] F
r [orRDER_BY ORDER. BY |Chnnse iterm lexamIW j 3
| Powered byAEI’RE

Figure 23. Specifying the solution structure for a non-procedural task

3.3.2. Modélling the solution structure for procedural tasks

The interface for modelling the structure of solutionspimcedural tasks (see Figure 22) is similar to
the interface for declarative tasks. The main differéadhe presentation of the solution structure. As
each problem solving step requires a solution which may icos&veral parts, the composition of
solutions for each step has to be modelled separately.eQosstly, the solution structure for
procedural domains consists of a collection of solution compdisesjtone for each problem solving
step.

Initially, as can be seen in Figure 22, ASPIRE will ilse steps that have been defined for the task of
adding fractions. For each step, there might be one a& ammmponents of the solution that the student
will need to specify. To add a component for a step, tliek+ button in the corresponding row of the
table. Then specify the label for the component, the quoneing concept from the domain ontology
and how many elements the student may enter. Therewregtions available for tHelement Count

« exactly 1 meaning that there is only one element which is mandatory;

e atleast 1 meaning that there may be one or more elementssafytié in the solution;

« 0 or 1, meaning that the component is option. If it exists instadent’s solution, there could
be only a single element specified.

« 0 or more meaning that the component is optional, but may have multiplaeats if
specified.

For example, in the first step of adding fractions, the studeeds to specify the lowest common
denominator, which is a single number. To add this compotienguthor would specify the label the
student will see (such a®west Common Denomina}pand select the LCD concept from the options
listed, and finally specify that there is only one nemito be added (as in Figure 24).

The other components of solutions in the Fraction Addition doitthetwo fractions, the sum of

fractions and the reduced sum) are added in the sameFigaye 25 shows the complete solution
structure. Once the solution structure is completed, thieave structuréutton.

24

I Home I Domain I Ontology I Problem S$tructure I ' Interface I bl Editor I Syntax C i I 5 e € i I Domain functions I Test Constraints .

Problem and Solution Representation (Domain - Fractions)

Problem structure

Task requirement (Relevant to all problems) W

Problem statemant F

Problem Component
Label Type

Solution structure

LCD: Solution Components = - +
Label Concept Elerment Count Free Text

I J.co LCD |Chooseitem... || Exacty 1 =] O

Fraction 1: Solution Components = - +
Label Concept Elerment Count Free Teut

Fraction 2: Solution Components
Label Concept Element Count Free Text

Sum: Solution Components e - +
Label Concept Element Count Free Test

Reduced sum: Solution Components e - +
Label Concept Element Count Free Test

Save structure

Logaout Powered byASi’RE

Figure 24. The solution structure with the initial component specified

I Home I Domain I Ontology I Problem Structure I Student Interface I Problem Editor I Syntax Constraints I Semantic Constraints I Domain functions I Test Constraints l

Problem and Solution Representation (Domain - Fractions)

Problem structure

Task requirement (Relevant to all problems) W

Problem statement F

Problem Component e - +
Label Type

Solution structure

LCD: Solution Components
Label Concept Element Count Free Text

I~ J.co LCD IChDDSE item jl Exarty 1 x| r

Fraction 1: Solution Components
Label Concept Element Count Free Text

I [Fraction? [celection Fraction |Chooseitem... || Exacty 1 =] O

Fraction 2: Solution Components
Label Concept Elerment Count Free Teut

I [Fractionz [celection Fraction |Chooseitem... || Exacty 1 =] O

Sum: Solution Components
Label Concept Elerment Count Free Teut

I [Sum [T selection Fraction |Chooseitem... ~| [Exacty 1 =] O

Reduced sum: Solution Components 5 - +
Label Concept Elerment Count Free Text

I [Reduced_Sum [7 selection Reduced fraction |Chooseitem... ~| | Exacty 1 =] O

Save structure

Logout Powered byASi’RE

Figure 25. The complete solution structure for fraction addition

In some domains, the student will be specifying some elemdrdomponents over two (or more)
steps. It would therefore be convenient to allow the autbiare-use components defined in a
previous step in later steps. When the author wants to aeldd aomponent to a step which has been
defined previously, it is necessary to tick gaectionbox of the corresponding row in the table.
Figure 26 shows a screenshot of the Solution Structure edfter, the author has added a new
component to th&quationstep and ticked the selection box. The interface thenagis@ drop-
down box from which the author can select a previously defiogghonent [Force).

25

Ontology || Problem Structure I Student Interface I Problem Editor I Syntax Constraints I Semantic Constraints I Domain functions I Test Constraints I I Logs .

Problem and Solution Representation (Domain - Mechanics)

Problem structure

Task requirement (Relevant to all problems) W
Problem statement F
Problem Component
Label Type
™ [Picture |image =l
Solution structure
Force diagram: Solution Components
Label Concept Element Count Free Text
™ |Force Force IChuuse item jIAtIeasH j O
O Engle Angle IChoose item jlﬂ ormare =l
" |Line Line | Choose item... le ormare =l
" |Point Point [Chooseitem.. x| p[0 ormore =
Equation-Solving: Solution Components (@ Repeatable)
Label Concept Element Count Free Text
" |[Equation [7 selection EqQuation [Chooseitem.. =] P[0 ormore =l
T [Force | W selection Force |'C hoose item j + .|Al|-‘=ast' j]

Powered byASK RE
Figure 26. Reusing components from previous steps

Note that Figure 26Reusing components from previous steps illustrates the solution structure for
the domain previously discussed in Section 3.1. In this dornaie fire two steps, and the second step
(Equation-Solving) is repeatable (see FigureA6domain with a repeatable step (Equation-
Solving)). The repeatable step is clearly identified in the smiustructure. All the components of this
step will be repeated for each iteration of the step.

3.4. Designing the student interface

After specifying the problem/solution structures, ASPIRHE show the student interface builder.
Figure 27 shows the initial state of the interface forNteezhanics domain, generated automatically
from the information the author has specified. At the tophefpage, the author is asked to supply
information about the display mode. The default option is thMHcode as shown in this figure. If
the author accepts this default option, the student will be gheRTML interface. At the top of this
interface, there is a set of standard buttons thatrsisideay use to select problems, get help on how to
use the system, change the system or log out. Under the huheristerface displays the problem
area, including the general instruction and the probletaratmt.

26

I Home I Domain I Ontology I Problem Struchure I Interface I Edih)rl Syntax C i I 5 tic C

I Domain functions I Test Constraints .

Student Interface Builder (Domain - Mechanics)

Solution Area Display Mode

Show the solution area for page 1 as:
" HTML a5 shown below
= Replace whole page with an applet
Salact ane... vl Mext Problem Change ITS
Froblem statement. ..
Solution w &
Force diagram Draw the diagram with all the relevant forces
Force Label Start End Magnitude
[+] r I =N =
< | i
Angle Label Size From To
-] | = [
4| | |
Line Label Start End
-] | | B | =l
‘ o
[{=] [next |

Logout powered by MSK Re

Figure 27. The initial interface for the Mechanics domain

The default HTML interface expects the student to typiéncomponents of the solution. However,
in some domains this is not a realistic expectation. dxample, in Mechanics, the student will be
drawing a force diagram, and textual input is thereforeapptopriate. In such cases, the author may
provide a domain-specific applet, a component that will sugperstudent in performing one or more
steps. The author needs to specify that the studerfaiceeanill contain such an applet.

If the author selects the second option, the applet wilhcepthe HTML interface, and will include all

solution components for that page. The state of the stiuttenface builder for that case is shown in
Figure 28.

27

I Home I Domain I Ontology I Problem Structure I Student Interface I Problem Editor I Syntax Constraints I Semantic Constraints I Domain functions I Test Constraints -

Student Interface Builder {(Domain - Mechanics)

Solution Area Display Mode

Show the solution area for page 1 as:
I~ HTML as shown below

i Replace whole page with an applet
Chooge applet

I Select one 'l Mext Problern Help Change ITS

Problem statement... Feedback text will be shown here...

I Errarflag -

Submit

[l
Logout powered by ASK RE

Figure 28. Specifying an applet to replace the default interface

If the author specified that an applet will be used, hetsinethen upload the applet by clicking the
Choose applébutton. This will bring a pop-up window, like the one shown iruFég29.Uploading
applets. The author needs to specify some applet-specific irftiom (the start class pathlocate
the applet on the local machine (via BBewsebutton) and upload it. Figure 29 shows a situation
when there were no applets uploaded yet.

Applet Selector

Linfoad 3 new apoliet
Start class path:|
Applet:| Browse. . I Upluad'

There are no applets saved for this domain, Use the upload box above to upload your jar
filels],

Figure 29. Uploading applets

2 For more information about applets please see devesldpetumentation

28

It is also possible to upload several applets, one aftesttiee. The same applet can be used on more
than one page. Figure 38electing appletsillustrates a situation when the author has already
uploaded two applets. In order to use an existing appleguti®r needs to select it (by selecting the

appropriate radio button in tiisplay column). In Figure 30, the author has selected CID-Stepa.jar
be used.

Applet Selector

Upload & new applet
Start class path:|

Applet| Browse. . | Upluad'

Uploaded Applets

Applet name Start Class Display
CID-Stepl.jar start.class 'f"
CID-Step2.jar start.class =

Figure 30. Selecting applets

The author does not have to upload the applets immediatehe huthor asks for a domain to be
deployed before uploading the applets, ASPIRE will show a mgmiessage. In that case, the author

can upload the applets, or continue without uploading them, ichvdaise the default interface would
be served to the student.

3.5. Problem/Solution Editor

The next step in the authoring process is to add exampfesldems and their solutions. To do this,
click the Problem editortab. Figure 31 shows the initial state of the problem edltbere are no
problems to show in the list, as hone have been added yet for thindtfreome problems have been
added previously, they would appear in the drop-down menu, amduld be possible to select a
problem from that list in order to modify or view it.

| Home H Domain || Ontology || Problem Structure H ' Interface || bl Editor || Syntax C i || & e C || Domain functions || Test Constraints

Problem Editor {Domain - mechanics, Problem-set - setl)
|Se|ed aproblem.. j Wiew all problems

Add a new problem

Powered byASr EE

Figure 31. The initial state of the Problem Editor

29

3.5.1. Selecting a problem set

For the Mechanics domain shown in Figure 31, we defined oniggie sproblem set; therefore all
problems added will belong to the same problem set. In sthetions, as discussed in Section 3.1,
there might be several problems sets defined. In such aici#s@ecessary to select a problem set
before a problem can be added. Figure 32 shows a screenostetdbmain containing several
problem sets.

| Home || Dromain || Ontology || Problem Structure || Student Interface || Problem Editor || Syntax Constraints || Semantic Constraints || Test Constraints

Problem Editor {Domain - SQL, Problem-set - movies)

I Select a problem... 'l view all problems

Select Problem-set

Add a new problem

Powered byﬂsr RE

Figure 32. The initial state of the problem editor for the domain Whiontains several problem sets

The difference between Figure 31 and Figure 32 is that themnm@tiple problem sets in the case of
the latter, and the interface contains an extra buttéineatop right $elect Problem-setThis button
allows you to see all existing problem sets, and setecbhe to add new problems into. Figure 33
shows the state of the problem editor after this buttoniiked. All defined problem sets are
displayed in a table. To select a problem set, click thédhnerappropriate line in this table. After the
selection, the Problem editor will show the name of thecwlgoroblem set at the top of the page.

Problem Editor

Problem Editor {Domain - 8QL, Problem-set - movies)
Select a Problem-set

|

armne Description g
movies Queries on the MOVIES databasel

cd-collection Queries on the CO Collection database

hooks Queries on the BOOKS database

Powered byASYRE

Figure 33. The selection of a problem set
3.5.2. Adding problems

The interface for entering problems and solutions is sirvléhe default student interface (i.e. HTML
code generated by ASPIRE from the domain definition). To genéns interface, ASPIRE-Author
uses the previously specified problem/solution structures efidrer when the author starts adding the
first problem for the domain, the Problem Editor providesat#or with the necessary interface
widgets, based on the problem structure, and expects the supapulate them.

When the author clicks the&dd a new problenbutton, ASPIRE will show the updated screen, as in
Figure 34. There are several general problem features ¢dysmhown in theProblem’s attributes
area. The unigue problem number is generated automatmaltiie system (1 in this case, as the
author is adding the first problem for the chosen problejn Bleé author may specify a name for the
problem, which is optional. If the problem name is spegciftedill be shown to students together with
the problem number; otherwise, students will only see thagmronumber.

30

| Home || Domain H Ontology || Problem Structure || Student Interface || Problem Editor || Syntax Constraints H Semantc Constraints || Domain functons H Test Constraints

Problem Editor {(Domain - Fraction addition, Problem-set - setl)

ISe\ect aprablem.. 'l fiew all problems

Cancel

ag

o, ag
Problem number 1

Name h
Difficulty SR 'h_ Update

Fixed problem statement... —

=
E

Edit general statement

Save problem

powered by ASK RE

Figure 34. Adding a new problem

The author must specify the problem difficulty, which ranfyem 1 (the simplest problems) to 9 (for

most complex problems). To specify the difficulty level, thehor can use the slider, or enter the
desired number into the text box. If the text box is usedter ¢he difficulty number, the author needs
to click theUpdatebutton for the difficulty to be updated on the slider shown.

Then the author needs to specify the task the studeatpisrform. As discussed in Section 3.4, in
some domains all problems will have the same general désaripht what the task is: e.g., in a
language tutor, this description might be: “Turn the followirggb into a noun,” and the student is
given a series of verbs to work on. On the other handgftaio problem sets, there is no such general
description, and every problem will have distinct insiang. The author specifies whether there is
such a general description for the problem set as wellyaadiditional components for the problems
(e.g. a diagram) in phase 3, and this informatiowvaslable within the domain model.

To specify the problem statement, click tBdit general statemenbutton. Figure 35 shows the
modified interface. Type the problem statement, and tliek the Savebutton. Once the problem
statement is specified, it will appear automaticallydibfuture problems in the same problem set.

| Home || Domain || Dntology H Problem Structure || Student Interface H Problem Editor || Syntax Constraints || Semantic Constraints H Domain functions H Test Constraints |

Problem Editor {(Domain - Fraction addition, Problem-set - set1)

ISeIed aproblem... ¥ | KRG

dd a new pro M Cancel

20, =
Problem number 1

Name h
Difficulty A T B

Fixed problem SCatement. .. —

Savel Cancel |

Save problem

powered by ASF RE

Figure 35. Adding a problem statement

31

Next, it is necessary to add the problem itself. Figursh®vs the author adding a problem to the
Fractionsdomain.

I Home I Domain I Ontology I Problem Structure I -face I Editor I Syntax Ci il I ic G il I Domain functons I Test Constraints '

Problem Editor {Domain - Fraction addition, Problem-set - setl1)

¢ all problems

|Se|e:t a problern.. j ¥

Problem number 1
Name |
Difficulty @ e VE Ypdae

bhdd the two given fractions: —

=l Edit general statement
175 + 2/5 =l

problem

Logout

powered by ASK RE

Figure 36. Adding a fraction addition problem

After specifying the problem text, the author also needpdgify the problem-specific components, if
any exist. In the examples used so far in this manual, ggrsbtontained no components. Therefore,
we now introduce an example instructional domain in whichlpnad contain components. Figure 37
shows the screenshot of the Problem Structure Editor, showa@uthor defining the problem
structure for the NORMIT domain. In this domain, studeassr how to normalize relations. Each
problem contains the task requirement, and a set of ttwenponents: the relation name, a list of
attributes belonging to a relation, and a set of functidepéndencies that exist in that relation.

I Home I Domain I Ontology I Problem Structure I Student Interface I Problem Editor I Syntax Constraints I Semantic Constraints ITest Constraints -

Problem and Solution Representation {(Domain - NORMIT)

Problem structure

Task requirement (Relevant to all problems) [}

Problem statement 72

Problem Component [~ [- [+ |
Label Type

" [Relation text 7]

I [atributes et <

O Functional Dependencies et <

Solution structure

Candidate Keys: Solution Components T
Label Concept Element Count Free Text

O |CandidateKey Attribute |Chouse item... j'l mary j r

Simply FDs: Solution Components |~ [-]+]
Label Concept Element Count Free Text

O ISimpIeFD [Cselection FD IChoase itern... j!|1 | O

Save structure

Logout

Powered byASi’RE
Figure 37. Specifying the structure of problems with three components

When the author starts adding problems for this domain, he/heeed to specify the mandatory
elements of problems (problem name, difficulty and prold&atement), and then additionally specify
the problem-specific components, as illustrated in Figure B8.althor is able to type in the textual

32

components in the text boxes provided. There are no graphicgooemts in this instructional
domain. To add a graphical component, the author needs to bimvaseype in the image's URL and
then press th&pload button, which will upload the image to the server to lbeest along with the

other specifications in the domain model.

Finally, it is necessary to click tt&avebutton to store the problem.

| Home || Domain || Ontology || Problem Structure || Student Interface || Problem Editor || Syntax Constraints || Semantic Constraints || Test Constraints

Problem Editor {Domain - NORMIT, Problem-set - setl)

I Selectaproblem.. VI Wiew all problems

Add a new problem Cancel

Froblem’s attributes
Problem number 1

Name |
Difficulty @ ' Updatel

Hrobfgn
Find the highest norwal form for the given relation, and, if
necessary, decowpose it into 3NF.

—L

Relation B
Attributes A.B,C.D j

Powered byﬂSl’ RE
Figure 38. Adding problem-specific components

As discussed in Section 3.1, in some instructional domamgtit be necessary to specify problem-
specific instructions for any problem-solving steps. Whetidying the domain structure, the author
may tick theProblem Specific Instructiobox for the appropriate steps (see Figure 5). As the mafsult
this action, the author would be asked to specify the @meisbecific instructions for the selected
steps, as illustrated in Figure 39. For the domain illstran this figure, the author requested
problem-specific instruction for thequationstep. The author can add those instructions in the text
box provided. The instruction will be given to the student whierking on the appropriate step.

33

I Home I Domain I Ontology I Problem Structure I Student Interface I Problem Editor I Syntax Constraints I Semantic Constraints I Test Constraints .

Problem Editor {Domain - mechanics, Problem-set - setl)

Selecta problem... 'l ¢ all problems

problem

\Froblan's attributes

Problem number 1
Mame h\
e J
Difficulty L h_ Update |
Probler
Two forces P and Q are applied at point L of a hook support. ;I
Knowing that P=60N and Q=100N, determine the magnitude and
direction of their resultant. LI
Problem Specific Step Instructions
Step name Instruction
Equation [Specify the rle to be used to determine the result
Save problem
L t
S powered byASF RE

Figure 39. Adding problem-specific instructions for a step

3.5.3. Adding solutions

After saving the problem, the author can add one or more@mduitdr it. Figure 40 shows the state of

the interface after the problem has been saved. Similadding and selecting problems, the author
can either ask for a new solution to be added, or selextof the previously specified solutions to

modify. Solutions can be selected from the drop-down menithter @iew or modify.

I Home I Domain I Ontology I Problem Structure I Student Interface I Problem Editor I Syntax C i I ic Co i I Domain functions ITest Constraints I I Logs .

Problem Editor (Domain - Fraction addition, Problem-set - set1)

Selecta problem... ~ | HEE RS
Edit problem Delete problem

Problem number 1
Name
Difficulty 1

add the two given fractions:

1/5 + 2/5

Selecta solution 'I Wiew all solutions for this prablem

Add 3 ne

Logout ASPIRE-Tutor

powered byASK RE

Figure 40. Adding a solution

34

The View all solutions for this probleroutton will show a pop-up window with all the solutions. In
the pop-up window, the author is able to nominate one solution thebéeal solution (i.e. the
preferred solution for the problem). The ideal solution is usedASPIRE-Tutor when students
request to see theaull Solutionof a problem. By default, the first entered solutiothis ideal solution.
Figure 41 shows a situation when three solutions have been fidegroblem, and the author can
nominate one of them to be the ideal solution. (Please raténtthe fractions domain there is only
one ideal solution per problem. The goal of Figure 41 is to show the ideal solution can be
specified).

Problem Editor
Problem Editor {(Domain - Fractions, Problem-set - set1)

1 -

Problem number 1
MName
Difficulty 1

Add the following
two fractions: 1/5 + 245

Selecta solution... «

All Solutions for this problem]
All Solutions|
j[n} Marme/Motes Ideal
H & _
2 e Powered by MS
3 @

Figure 41. Specifying the ideal solution

When the author clicks th&dd a new solutiomutton, the Problem Editor displays the interface for
entering a new solution, as illustrated in Figure 42. Focgmural domains, when there are multiple
steps for solving a problem, the solution workspace allows atithor to enter all the steps

simultaneously, as opposed to navigating through the stepat@tme as the students would. This
eliminates the navigation efforts needed between stegddéngna easier for the author to add and

inspect the full solution for a problem. Each step is diggad along with its name and description that
the students would see, and are separated by borderskeéoantdear distinction between steps. The
author needs to specify the solution components for each prafitving step. Once the author is

satisfied with the solution, it can be saved by clickingh@8ave solutiorbutton.

35

I Home I Domain I Ontology I Problem Stucture I Student Interface I Problem Editor I Syntax Constraints I Semantic Constraints I Test Constraints I

Problem Editor {Domain - SQL, Problem-set - movies)

2 'I wview all problems

Add a new problem Edit problem

Problem’s attributes
Problem number 2

Name
Difficulty 3

Problern
For each movie, show the title and the name of the director,

Select a solution... 'l wWiew all salutions for this problem

Add a ney
ISolution’s attributes
Solution nhumber 1
Name/notes |
Saiution
SELECT ;I
FROM (=

wUCDC T

Figure 42. Entering a solution to problem 2

The author may choose to enter problems first and thethanidolutions at a later time. The Problem
Editor shows the problem number in red if there are noisokispecified for that problem yet.

As shown in Figures 40-42, the author is also able to ediélete any problem previously entered by
clicking on thekdit or Deletebuttons respectively. Deleting a problem, however, wib dislete all of
its solutions at the same time.

Solutions can also be deleted independently of the problejurd=43 shows a situation when the

author has selected solution 4 for problem 1. To delete bighsolution and keep the other solutions
for the same problem, the author clicks Eredete solutiorbutton.

36

I Home I Domain I Ontology I Problem Stucture I S5tudent Interface I Problem Editor I Syntax Constraints I Semantic Constraints ITest Constraints I

Problem Editor (Domain - Fractions, Problem-set - setl)
1 j view all problems

Add a new problem Edit problem Delete problem

IProblierm’s attributes

Problem number 1

MName

Difficulty 1
Problem

Add the following
two fractions:
1/5 + 2/5

Add a new solution

Soiution’s attributes
Solution number 4

Name/notes |

Solution
LCD Specify the lowest cormmon denorminator for the two glven fractions.
LCD Value

j4

Fraction 1 Modify fraction I (f necessary)
Fractionl Value Murneratorialue
I 1 i

Figure 43. Deleting a solution

3.5.4. Re-arranging problems

The author can see all the problems in the current probérbysclicking theView all problems
button, which opens a new window, as shown in Figure 44hésesults, the new pop-up window
shows the ids, names and difficulty levels of all probleBlicking on the problem id will display the
problem in the main window along with the options to edit detdehe selected problem.

| Home || Donmain || Ontology || Problem Structure || 5tudent Interface || Problem Editor || Syntax Constraints || Semantic Constraints || Test Constraints

Problem Editor {Domain - Fractions, Problem-set - setl)

Select a problerm... 'I_ all problems

All Problems x
All Problems
j(n} Marne Difficulty

11 1
1

Powered by.ﬂStf EE

Figure 44. Viewing problems

The problems will be shown initially in the order in whitdtey have been specified. However, the
author can modify the order of problems to be presentaddersts. To change the order of problems,

37

the author needs to select the problems to move upwardskiygtihe boxes at the beginning of
corresponding rows, and then click the ~ button as man tieenecessary.

3.6. Generating syntactic constraints

Once when the author finishes entering problems and solutamsstraints can be generated.
Syntactic constraints check the student's solution for syetaprs. These constraints are generated
automatically by ASPIRE-Author from the domain ontology. All niesbns specified on domain
concepts and their slots (such as minimal/maximal valugsst of slots and restrictions on
relationships) are translated into syntax constraints. tidddily, for procedural domains ASPIRE-
Author also defines constraints that make sure that tlieeist has completed all previous problem
steps before attempting the current step. We do not providanetion of how syntactic constraints
are generated here - the interested reader is referf8drmweera, Mitrovic & Martin, 2005; Mitrovic

et al., 2006, Suraweera, Mitrovic & Martin, 2007]. It isfeiént to know that if the student's solution
violates a constraint, the intelligent tutoring systeith wform the students that there is an error in
their solution. In that case, the student might also bengigeme feedback, corresponding to a message
that is attached to the constraint.

TheSyntax constraintsab allows the author to ask for syntactic constraintetgenerated. At the top
of the page (Figure 45) there isGenerate constraintbutton. When the author clicks this button,
ASPIRE-Author will analyze the domain ontology and generatedh@sponding syntax constraints.
To save the generated constraints, click3aeebutton at the bottom of the page.

Home ‘ Domain ” Ontology ” Problem Structure ” Student Interface H Problem Editor H Syntax €. i H ic O+ i H Domain functions || Test Constraints ” ‘ Logs

Syntax Constraints {(Domain - Fraction addition)

Generate constraints |

Powered hyASrRE
Figure 45. The initial state of the Syntax Constraint page

Figure 46 illustrates syntactic constraints generated Herfiactions domain. The constraints are
arranged in groups corresponding to domain concepts they le@ve denerated from. The figure
shows two concepts: LCD and Fraction. LCD (the lowest congeolominator) is shown first, as this

is the first step the student has to specify the answeérhere are two constraints generated for this
concept. Each constraint consists of two conditions (relevand satisfaction condition) followed by
two feedback messages. The two feedback messageswsitidwn to the student one at a time when
the constraint is violated, and the student asks for rfeedback. These feedback messages are
automatically generated by ASPIRE; however, the author can yrtbeifn to make them more useful
for the student.

The tick box at the beginning of each constraint allowstmstraint to be selected. In order to delete
one or more constraints, they need to be selected fidthan theDeletebutton at the bottom of the
page needs to be clicked.

At the end of a group of constraints for each concept ft@rontology, there is th&dd Constraint

button. This constraint allows developers to add new cantstravhich are manually defined. Authors
are not allowed to add/modify constraints.

38

| Home || Domain || Ontology || bl Structure || 1. Interface || Problen Editor H Syntax C i || & tic C i || Test L

Syntax Constraints (Domain - Fractions)

Generate constraints |

LCD
T {and (equalp (page-number *s33*) 1) -
(not (null (LCD *is®)))
(not (mall (LCD %ss%)))
e DA i L CTAEDT e /S5 h_IAED s e iemezr 00 El
(not {(edqualp " 2p0)) ;I
s
[
Fi [v'ou have fargotten to specify a value for Walue of LCD item in LCD
F: [v'ou have forgotten to specify awalue for Yalue of LCD itern in LCD
[T iand (equalp (page-number *sa*) 1) =
(not (null (LCD *is®)))
(mot (null [LCD *a3s%)))
fmatek LEafdl <% 24d UTOTT ani <t 2a®kA? 4 (TET Feath Fhindince®h LI
(Eloat-p 2p0) =l
s
[
Fi [The “alue' of 'LCD' item in 'LCD' component should be a floating point nurmber
F: |The “alue' of 'LCD' item in 'LCD' component should be a floating paint number
Fraction
[T |{and (equalp (page-number *ss*) 1) -
(ot (null (Fractionl *is®)))
(not (mall (Fractionl *zs%)))
e LRGN Gt Tttt el D/ 5 OFYTEL . bmremtsicrsl_Tisih ¥ ey El
(not {(edqualp " 2p0)) ;I
s
[
Fi [v'ou have forgotten to specify a value for Walue of Fraction item in Fraction
F: [v'ou have forgotten to specify a value for Yalue of Fraction item in Fraction

Figure 46. Generated syntactic constraints

3.7. Generating semantic constraints

Semantic constraints are generated on the basis of problantheir solutions that the author has
specified. Please note that for valid semantic caims to be generated, ASPIRE needs multiple
problems and their solutions. Also, note that in domains evhrertiple solutions exist, they need to
be provided by the author, to guarantee a good domain model. Imstotatrsyntactic constraints,
these constraints do not check for syntax errors. Semmamtistraints look for semantic errors in the
student solution - these are errors that are specitiset@roblem the student is attempting to solve.
We do not provide explanation of how semantic constraints areageddere - the interested reader
is referred to [Suraweera, Mitrovic & Martin, 2005; Mitrovét al., 2006, Suraweera, Mitrovic &
Martin, 2007].

The Semantic constraintsab allows the author to ask for semantic constraintetgenerated. This
tab is only available when the author has specified sonidgone and their solutions. At the top of the
page (Figure 47) there is th8enerate constraintbutton. When the author clicks this button,
ASPIRE-Author will analyze the specified problems and theidutions, and generate the
corresponding semantic constraints. To save the generatsttaiats, click theSavebutton at the
bottom of the page.

39

| Home || Domain || Ontology || Problem Stucture H Student Interface || Problem Editor || Syntax Constraints || Semantic Constraints || Test Constraints

Semantic Constraints {Domain - Fractions)

Generate constraints |

LCD
T {and ({equalp (page-number *as*) 1) ;I
{natch '{2*dl <i> 28§5-idl "LCD™ "5" </i> 2%d2) (LCD +*s3*) *bindings*))
[
{match '(2*d3 <i> 2I§-idl "LCD™ "5" </i> 2*d4) (LCD *is*) *bindings®) =]
s
E

Fi [There's a mistake in “alue' of 'LCD' items you have defined in the LCD component
F: [There's a mistake in "Value' of 'LCD' iterns you hawe defined in the LCD component

T |{and {equalp (page-number *s3%) 1)

(match '(#*dl <i> ?I5-idl "Fraction™ "1" <r> 2*I5-rell </r> </i> ?*¥d2 | (Fractionl *is*) *bindings¥*)
(bind ?I%-id2 (car (lockup '?IS-rell *bindings*)) *bindings*)
fmatok 1ia%A2 sim 2T 542 IO FFEr o dh a%dA) ATCT fie®) Fhindirnes®h

|3 KT I 3

(match '(2*d7 <ir 255-id& "LCD™ "5" /1= 2¥dE6) (LCD *s53*) *bindings¥®)

I

Fi [You are missing 'LCD" items inthe LCD companent
F: [v'ou are missing 'LCD' tems inthe LCD component

T {and ({equalp (page-number *as*) 1) -
(match '(2%dl £ix ?I8-idl "Fraction™ "1™ <£r> 2*I8-rell </r> </i> 2%d2) (Fractionl *isz*) *bindings®)
(bind ?I%-id2 (car (lockup '?IS-rell *bindings*)) *bindings*) LI
fmatok 1ia%A2 sim 2T 542 IO FFEr o dh a%dA) ATCT fie®) Fhindirnes®h
(match '(2%d7 «<£i> 235-id2 "Fraction™ "1" <r» ?*35-relZ </r> </i> #*d§) (Fractionl *ss5%) *bindings*) ;I

K

Fi [v'ou are missing 'Fraction' items in the Fraction] component

F: [Y'ou are missing 'Fraction' items in the Fractionl compaonent

[iand (equalp (page-number *ss*) 1)
(match '(#*dl <i> ?35-idl "Fraction™ "1" <£r> 2¥55-rel? <£/r> /1> 2¥d2) (Fractionl *ss*) *bindings®)

dand ACE SA% fane {lanleae [ARE wnlT Fldwddeeratt t Fldaddmeen®l

LI

Figure 47. Generating semantic constraints

3.8. Deploying the tutoring systems

Once the author has completed all the authoring steps, heéshevamt to see the tutoring system
running. This allows the author to interact with the tugrsystem, solving problems and receiving
feedback in a manner similar to students. The task ofrgtaattutoring system (to run on ASPIRE-
TUTOR) is calleddeployment

| Home || Domain H Ontology || Problem Structure H Student Interface H Problem Editor || Syntax Constraints H Semantic Constraints H Domain functions H Test Constraints || [}Eploymentl Logs

Deploy Domain (Domain - Fraction Addition)

Deploy Domain

Powered byASf EE

Figur e 48. Deploying a domain

Clicking the Deployment tab will initiate a number of cheadn the domain to test whether the
information supplied by the author is consistent and whétteedomain model is complete. Figure 48
shows a screenshot of the deployment page of a domain where ASREREot found any
inconsistencies. In such cases, the author can simmly oh the Deploy Domain button. After
clicking this button, a success message is displayed if the devasinleployed successfully (Figure
49). A summary of the deployed domain is also shown.

The author can then try the tutoring system on ASPIREfT@lick the ASPIRE-Tutor link at the
bottom of the page, which will take you to ASPIRE-Tutor. Tibe tutoring system will be listed on
the My Domains tab.

40

Home | Domain H Ontology H Problem Structure H Student Interface H Problem Editor || Syntax Constraints || Semantic Constraints H Demain functions H Test Constraints || neployment| Logs

Deploy Domain (Domain - Fraction Addition)

Deploy Domain

Domain successfully deployed on ASPIRE-Tutor

Problem solving steps 4
Concepts in ontology 5
Problem sets 1
Problems for sets - 'set1’ 5
Generated syntax constraints 21
Generated semantic constraints 10
Generated domain functions i}
User added syntax constraints 0
User added semantic constraints 1]
User added domain functions 1

Powered byASK RE

Figure 49. Successful deployment of a domain

Figure 50 shows an example of a domain where ASPIRE is ngathie author that the domain
ontology was modified after the constraints were generatbis ifdicates that the author has
modified the ontology after generating constraints. The wasngtmpuld only be used as a guide.
Therefore, the author has to decide whether to deploy theimovith the warnings or re-generate the
constraints.

tome || Domain || ontology [[Problem structure || student Interface || Problem Editor || syntax ¢ ints || ic € ints || Domain functions || Test constraints | Deployment || Logs

Deploy Domain (Domain - chemistiy)

Domain ontology was modified after generating syntax constraints; the syntax constraints may be out of date.
Domain ontology was modified after generating semantic constraints; the semantic constraints may be out of date.

Deploy Domain

Powered byASfaE
Figure 50. The Deployment page with warnings

During the domain testing procedure ASPIRE may identify grirothe domain that would result in
an incomplete tutoring system. ASPIRE does not allow depldyofetiomains with errors. In such
cases, ASPIRE will display an error message that sayslomain cannot be deployed. Figure 51
contains an example of a domain that contains a problemneitsolutions. ASPIRE does not allow

such domains to be deployed.

Home | Domain || Ontology || Problem Structure H Student Interface || Problem Editor H Syntax Constraints H Semantic Constraints H Domain functions H Test Constraints || neployment| Logs

Deploy Domain (Domain - Fraction Addition)

Error Problem '5' (") does not have any solutions

Domain has 1 errors! It cannot be deployed until the errors are fixed

Powered byASi’ EE

Figure 51. Domain with errors

41

3.9. Additional Pagesfor Developers

Several of the tabs in ASPIRE-Authdddmain Functions Test constraintsand Log9 are only
available to developers. We do not describe them in thisual. Information applicable only to
developers is available in a separate docuhfismn the ICTG group. See Section 4.5 for a discussion
of the developer user type in ASPIRE.

4. ASPIRE-Tutor

As explained previously (see Figure 1), ASPIRE-Tutor igutwring server. It delivers all the tutoring
systems developed in ASPIRE-Author to users. The arthiteof ASPIRE-Tutor is illustrated in
Figure 52. ASPIRE-Tutor consists of a set of modulesh vaach module having specific
responsibilities in the serving of intelligent tutoring &yss. This document provides a very abstract
discussion of the functionality provided by ASPIRE-Tutor &suhderstanding of internal operations
is not required for authoring new systems in ASPIRE. drniled discussion on the design and
functionality of ASPIRE, please see [Mitrovic et al.08D

The student accesses an intelligent tutoring system sewA&PIRE through a Web browser. Every
action performed by the student would be sent to thedbeStanager, which passes the appropriate
requests to the Pedagogical Module. The Session Managem#nages the flow of control of the
interaction.

The Pedagogical Module decides what actions to take tdl fhii request, and does so by sending
appropriate requests to the other modules, i.e. any/atleoDiagnostic Module, Domain Manager,
Student Modeller, Log Manager and User Manager. The Pedagddmdule thus manages the
pedagogical decisions that determine what the responaetigeguest will be.

Each request to a module results in a status and obptiata being returned to the Pedagogical
Module. In addition, the functional modules may accessangidate data objects, e.g. student model,
domain model, logs, which are stored in the Allegro @atdtabase. The various components of the
model may also be updated. The Pedagogical Module retrfintl status and data to the Session
Manager. The Session Manager organises the result toubeeck to the interface, by packaging up a
response and/or indicating what interface object shoufatdsented next.

The Diagnostic Module analyses students' solutions, andifiderdiny mistakes students made. In
order to be able to perform this task, the Diagnostic Moadieeds the services of the Domain
Manager, the component that is in charge of all knowledge Ksisesn aslomain modelén Figure
52) developed for various intelligent tutoring systems. l@nhasis of the diagnosis performed by the
Diagnostic Module, the Student Modeller updates the student maelethe system's view of the
student's knowledge. The student model is used to adapt instali@@iions to meet the needs and
abilities of each individual student.

All actions students perform in ASPIRE are logged, and tbg Manager is responsible for
maintaining the logs. Finally the User Manager is the comporwkich maintains user information,
and makes sure that only authorized people can acceBfRESand various intelligent tutoring
systems defined within it. There are several types afrsusn ASPIRE: students, teachers,
administrators, developers and authors. Each group of basrspecific privileges and rights in the

® Please emailanja.mitrovic@canterbury.ac.lirz order to get developer’s documentation

42

system, and can access different parts of the systear. Manager makes sure that users can access
the part of ASPIRE they need.

Interface

r

Session Manager

6

ASPIRE Sessions

Allegro Cache Database
—_ Acg,
-— :sg‘-? % oa;@%
Pedagogical Module ﬁ 93_,: T Domain Models
é“__.-—" = Student Models
F/ ﬂ%ﬂ Users
&/ AN Log
Domain Manager |4~ & v
& £ r 4
& E
@56@_ ; n User Manager Log Manager
r m
&G/ b4
Py 4 =
Diagnostic Module > Y

Student Modellar

Figure 52. The architecture of ASPIRE-Tutor

4.1. Logging in to ASPIRE-T utor

As discussed previously (see Section 2), to be able to lodABPIRE, you need to have a valid user
account. Once when the user specifies all the necesdarynation, the home page will be shown.
There are various types of users in ASPIRE, and the page displayed after logging in will depend
on the type of the account used. The role of authors tesdglbeen discussed in detail in Section 3 of
this document. The following sections explain the rolesfandtionality available to administrators,
teachers and students.

4.2. Administrator

An administrator is a person who is responsible for miaint ASPIRE, controlling the deployment
of new tutoring systems, and maintaining user accounts. @hea an administrator logs in, he/she
will be taken to the administrator home page, shown in Figike The home page provides
information about all sessions currently running in ASPIRE-TRtgase note that Figure 53 shows
three running sessions. For each session, the administiithe shown the session id, the id and the
user code of the corresponding user, the type of the sessidimgstime and duration. Information
listed underConnection datancludes the IP number of the server, and the IP nuofliee machine
the administrator is using.

43

J Home || Users || Affiliations || IT5 Management || Logs || Authoring || Groups || My Domains ” My Account || Logout |

Home

__

' Running Sessions

! session-id user-id user-code session-type start-date-time duration
E 51328312860936006638492775720870971512 S018 bdrz4 PUATATY 15/05/2007 14:19:24 1:47:48
E 266483094095988352563771984525044303819 3013 tanja W 15/05/2007 16:07:10 0:00:01
i 121788028650982637387032756570768938952 1020 mstes Y 15/05/2007 16:00:43 0:06:28

Connection Data

' Server IP: 132,181.10.22 name: ictg.cosc.canterbury.ac.nz port: 2001

¢ Local User [P: 132.181.8.53 name: cosc7l5.cosccanterbury.acnz port: 2961
v Jurnp to Authoring Tools

Pending Tasks
| Task Requested-by

Fowered by.ASr ae
Figure 53. The administrator home page

At the top of the home page, there is a set of tabs forugfimnctions that the administrator can
perform. The same tabs appear on all pages that araldeaib administrators. ThHéometab brings
the administrator back to this home page.

TheUserstab takes us to tHéser Managemergiage, which consists of three parts. The top part of the
page (shown in Figure 54) allows the administrator to add news (mee at a time), by specifying the
information about the user. The middle part (Figure 55) altbesadministrator to add multiple users
at once, so that all of them will have student accowamtd will have the same initial password and the
same affiliation. The bottom part allows the administratoretrieve information about existing
accounts. The administrator can search for all accdonta specific affiliation, or search for a
specific account. Figure 56 shows that part of the page, thiteadministrator has searched for a
specific user. The administrator can change the informabont a particular user by clicking tadit

link, or delete the user account. The page also shows #hextwhber of accounts created in ASPIRE.

44

In order to create a new user, the administrator haotidera user code, the full name of the person,
his/her affiliation (selected from the list of options), thée of the user (also selected from the drop-
down list). Then it is necessary to specify a passwarthie user (and confirm it by entering the same
password for the second time), followed by the user's eagassword must be longer than 4

characters. Each user code must be unique within thiaidfil it is related to.

I Honme I Users I Affiliations I ITS Management I Logs I Authoring I Groups I My Domains I Request Action I My Account I Logout I

User Management

__

User Code: I

Full Name: |
. affiliation: Iictg j

Uszer Rale: |student j

: Password: I

Confirm password: I

Email: I

Savel Reset |

Add Multiple Users

Role will be ‘student’, password and affiliztion will be the same for alf users, and users will have no emall address initially,
| User Codes: Separate user-codes by newlines,

| [|

Figure 54. The User Management page

45

i Add Multiple Users

| Bote will be student’, passwaord and affiliation will be the same for all users, and users will have no email
v address initiafly.

User Codes: Separate user-codes by newlines.

53ve| Reset |

N =l .
N = o
Password: I
Confirm password: I
Affiliation: |Linco|n j

Figure 55. Adding multiple users at once

The Affiliations tab allows the administrator to manage affiliations. Fdaif shows the screenshot of
this page. The administrator can add a new affiliationl {Endescription), and view all affiliations
previously defined.

46

Search Users

Usercode (blank for I
anyl:

Affiliation: IALL

Search |

Total Murmber Of Users In System: 53
 Search Results

Returned I results,

user-id user-code user-email

affiliation-name user-role edit (|

2014 ahl3s abl3s@student.canterbury.ac.nz ictg developer edit O

Delete Selected Users

Logout

Powered hyaslj RE

Figure 56. Retrieving information about existing users

I Home I Users I Affiliations I ITS Management I Logs I Authoring I Groups I My Domains I Request Action I My Account I Logout -

Affiliation Management

——

 Add Affiliation

Affiliation Mame: I

Affiliation Description: I

Savel Reset |

..

..

Registered Affiliations

L Affiliation Narme Affliation Descrpion
| ictg ICTG developers and administrators,
 public Provides access to publicly available domains,

canterbury Intended for the University of Canterbury students enrolled in COSC courses,
1 clearsighted A company in Iowa hitp: e clearsighted. nety

__

Powerad hgﬁs r RE

Figure 57. The Affiliations page

Figure 58 shows thé&l'S managementage, which allows the administrator to manage the tutoring

systems served by ASPIRE-Tutor. The top part of this pge's the administrator to deploy a new
domain, by selecting it from the drop-down menu.

a7

The bottom part of this page shows the list of deployed donfaénghe intelligent tutoring systems
that are currently available in ASPIRE). For each dorfidentified by its name), the page shows the
status. In Figure 58, there are several domains whose stataged which means that those systems

are available to students. When a domain is initially agol to ASPIRE-Tutor, its statusspped
which means that the domain is available, but has not beenbysany students yet. TManagelink
provides the administrator with more information about the dmnsich as the number of users
currently using that domain. The administrator can stoputioe using the Manage link.

| Home || Users || Affiliations || ITS Management || Logs || Authoring || Groups || My Domains || Request Action || My Account || Logout |

ITS Management

Deploy Domain

Deplay domain; | abed =l
Submit |
i Deployed Domains
\ ITS-name Status
' Fraction Addition started Manage
i Capital Investment Decision started Manage
wiorkshop stopped Manage
! Liz-Fraction Addition started Manage
i &dding Fractions started Manage
i Subtract Fractions - Weidrman started Manage
© fraction subtraction started Manage
! Fraction Subtraction started Manage
! fraction subtraction - Weidman started Manage
! FractionSubtraction started Manage
Fraction Subtraction - Weidman, Final started Manage
i chemistry stopped Manage

Powared hl,lAS'J RE

Figure58. The ITS Management page

The Logs page (Figure 59) shows the information about the user sessiomsadministrator may
specify the types of sessions he/she is interested isesdlions, or just sessions of users who are
currently logged in. For each selected user, the page showsdaheode and affiliation, as well as the
start/end times, the session length and whether the userréntly logged in. The administrator can
also get more information about a session by clickingritee infolink.

48

I Home I Users I Affiliat I ITS I Logs I Authoring I Groups I My Domains I Request Action I My Accountl Logout _

ASPIRE-Tutor Logs

Sessions History

ilCurrentIy Logged In vl Subrmit

! User Code Affiliation Start Time End Time Session Length Logout Notes

studentl ictg 13/11/2007 17:04:51 Unknown Unknown Mo log out recorded {and no relogind. more info...
¢ adminl ictg 14/11/2007 13:44:45 Unknown Unknowr Currently logged in. more info...
SR Powered by AS K RE

Figure59. The Logs page
TheAuthoringtab allows the administrator to switch to ASPIRE-Authiisqussed in Section 3).

The Groupspage, shown in Figure 60, allows the administrator to addwpgand modify existing
groups. This functionality is primarily the responsiilif teachers, but administrators also have the
privileges to work with groups. A group is a collection tfdent accounts (i.e. a class) who are
allowed to use one or more instructional domain. To addvagneup, the administrator has to give it
a unigue name, add an optional description, and spdwfiaffiliation. The administrator can also
modify existing groups, by adding/deleting users, adding/deletorgains, and view information
about users belonging to the group. See Section 4.3.1 for niomadtion.

I Honme I Users I Affiliations I ITS Management I Logs I Authoring I Groups I My Donmains I My Account I Logout -

Group Management

Add Group

Group Mame: I

Group Description: I

Group Affiliation: InEWAm|iatiDn j

———

Registered Groups

groupl Edit Delete Yiew Users Assign Wsers Set Domains

Logout FPowered bl,lAEiJ EE

Figure 60. The Group Management page

49

The My Domainspage provides information about available domains. NijiéAccountpage allows
the administrator to modify his/her profile. The administratown user code and affiliation will be
shown. The administrator can change these two, as wetbage the password and email.

See Section 4.3.5 for more information aboutRieguest Actiomab. To log out from ASPIRE, click
theLogoutlink at the bottom of the page, or thegouttab.

4.3. Teacher

The role of the teacher is to set up access to the tuteystgms for various groups of students. The
teacher may set up various parameters, defining how the studierinteract with the target
instructional system, and will also specify groups of sttgleA group of students would have exactly
the same experience while working with the system.

J Home || Groups || My Domains || Request Acton || My Account || Logout |

Home

Powared by.ﬂsrae
Figure 61. The Teacher Home Page

Once when a teacher logs in, he/she will be taken todime Ipage shown in Figure 61. The six tabs at
the top of this page are shown on all pages available to teathefdy Accountab brings up a page
which allows the teacher to modify his/her own profile, My Domainstab allows the teachers to
see the instructional domain he/she has access to (asssdidcin the previous section for
administrator). Thélometab brings you back to this page.

4.3.1. Group M anagement

The Groupstab displays the page shown in Figure 60. As specified inoBett2, theGroupspage
allows the teacher to add a group, and modify existing gropgoup is a collection of student
accounts (i.e. a class) who are allowed to use one a imsiructional domains.

To add a new group, the teacher needs to specify the groug dascription and affiliation (selected
from the drop-down list). The group name must be unique wifiiliation, and must be at least five
characters long. When done, click ®a&vebutton. TheResetbutton clears all the fields.

Existing groups are shown in the bottom part of the page.détr group, there is a set of links that
can be used to edit/delete the group, view users assigrneel gooup, assign students to the group or
set instructional domains for a group.

Figure 62 shows the page for assigning users to groups. Thartopf this page shows users who are
currently assigned to the chosen group. Besides eachadrthere is a tick box which can be used

50

to select the account to me removed from the group (byirdidke Remove Selected Users From
Group button).

| Home || Groups ” My Domains || Request Action || My Account || Logout |

<< Group Management | Group Assignment

iUsers Currently In Group "ACCT101"
(PS5 = Pedagogical Setting, SM = view Student Model)

There are 8 user(s) in this group,

| User-code Affiliation [

amanda icktg O
hrernt ictg O
devon ictg O
moffat ictg O
nancy ickg O
nick ictg O
pramudi ictg -
' |

¢ tanja ictg

Remove Selected Users From Group

...

Search for Non-Group Users

Usercode (blank for I
anyl:

Affiliation: IALL j

Search |

...

Pawered bn,-ASr Ee
Figure 62. The Group Assignment Page

The bottom part of this page allows the teacher to add newnssugtethe group. To do that, the
teacher needs to search for the account by specifying ¢heade, or to ask for all accounts within a
specific affiliation. The page then shows all the retriesecbunts, and the teacher can ask for one or
more of them to be added to the group.

4.3.2. Assigning Domainsto Groups

When a group is created, the teacher needs to spectiyttimg system(s) the group will have access
to. To do that, click th&et Domaindink from the Group Management page (Figure 60). ASPIRE will
then show the Set Domains page (Figure 63). At the top of thetbage s aview/Assign Userlnk,
which allows the teacher to view the students in the grouxt, M& page shows a menu containing all
domains, from which the teacher can select a new domaiassigh it to the group.

51

| Home || Groups || My Domains || Request Action || My Account || Logoutl

<< Group Management | Set Domains for "ACCT101"

...

' Assign Domain |Fractiun Addition j o Group
L Submit |

...

Powered byﬂsr EE
Figure 63. The Set Domains Page

The bottom part of the page shows all domains have been atldcethe group. The group illustrated
in Figure 63 has no allocated domains. The teacher tharisstle name of the domain (eCGapital
Investment Decisignwhich then requires the teacher to specify how the chdsmain will be used.
In ASPIRE, this specification is known as fedagogical settingsand is explained in the following
section.

After allocation theCapital Investment Decisiodomain to this group, the resulting state of the Set
domains page is shown in Figure 64. The bottom part of the pagehoaws the domain, with two a
relatedUnassign Domaitink, which can be used to remove the domain from the grotgs;thht, the
students in the group wil not be able to access that domaifhe
Assign Pedagogical Settings to Studdints (discussed in Section 4.3.4) allows the teacher tofgpeci
the pedagogical settings, that is, to tune the behaviothreofutoring system for the specific group.
The teacher can also define a new pedagogical settingidkingl on the corresponding link. The
definition of pedagogical setting is specified in the follows®stion. Finally, ASPIRE shows the
pedagogical settings the teacher defined for this domain previAGCT101-settings with the Edit
and Delete links.

52

| Home || Groups || My Domains || Request Action || My Account || Logout |

<< Group Management | Set Domains for "ACCT101"

__

__

! Assign Damain IFractiDn Addition j to Group
1 Submit |

..

' Domains

Capital Investment Decision LUnassign Domain
 Pedagogical Settings Assign Pedagodgical Setfings to Students Define Mew Pedagoqical Setting
ACCT101-settings Edit Delete

Powered byhsr EE

Figure 64. The modified Set Domains Page

4.3.3. Specifying Pedagogical Settings

The teacher needs to specify the pedagogical settingsafdr domain assigned to a group. The
pedagogical settings page will appear automatically aftdoraain has been added to a group (as
discussed in the previous section), or can be defined/modifedager time (by clicking the Define
New Pedagogical Setting link shown in Figure 64). ASPIRE{Twill then open a new page,
illustrated in Figure 65.

The Pedagogical Setting (PS) is a set of parameterdaseecify fine details of the options students
will have when they work in the corresponding domain. For dacafmin, the teacher needs to specify
at least one set of pedagogical settings.

The Define Pedagogical Setting page (Figure 65) requireeadlober to specify the name for the PS
first (note that there might be multiple PSs for theealomain for one group). Each PS must have a
unigue name. The teacher needs to specify the problentiaelstrategies that will be available to
students. There needs to be at least one problem seletttitagy specified. ASPIRE-Tutor starts with
some default options, which can be modified. There arggtauaps of problem-selection strategies. In
the first group Automatic Selectignthere are two options. Thext Problenmoption means that the
student will get as a new problem the problem that immdgifabows the current problem (please
note that the order of problems is specified by the autiitg System's Choiception is a problem-
selection strategy which uses the student model: ASPIREamdllyze the student's knowledge at the
time, and select a problem at the appropriate level of axitpl At the moment, there is only one
problem-selection strategy available of this kind, but irfuhere others will be added.

53

Define Pedagogical Setting

__

i Pedagogical Setting Name: |

! Problem Selection Strategy
| Choose between I and 4 options

e Automatic Selection
o ¥ Mext Problem
o W System's Choice
s Choice: |Based on the Student Modelj
o Student's Selection
o [T From The List
o [T Based On A Concept

Feedback Selection Strategy

s Available Feedback Levels:
o M qQuick check
o M Error Flag
o W Hint
o ¥ Detailed Hint
o W 2l Errars
¥ Show Solution

o
e Level to stop at (for automatic level increase): IDetaiIed Hint '|
« Maximum Mumber of Feedback Messages:lU O = unlimited

¢ Mumber of Attermpts Before Full Solution .fixllu\f\red:lD 0 = always available
e Show Number of Errors During 'Quick Check'? W

Subrmit | Cancel |

Figur e 65. Specifying pedagogical settings

The second group of problem-selection strategies involvestuldent in choosing a problem to work
on next. TheFrom The Listoption means that the student will be given a list of lgerab to select
from . TheBased On A Concepiption means that the student will be given a list of doroancepts,
and he/she will select a concept to practise. ASPIREtheh select a problem of the appropriate
complexity based on the chosen domain concept.

Next, the teacher needs to specify the levels of feedbaek ¢p students. There are seven feedback
levels to choose from, and by default, they are all alvkl

» Quick Checkthis level of feedback provides minimal information to thedeht. Once when
the student submits a solution (and this level of feedbas#léxted), the student will only be
told whether his/her solution is correct or not.

» Error Flag: at this feedback level, the student is told, for inedrsolutions, what part of the
solution is wrong;

« Hint: for this level, the student is given feedback on the ficdated constraint;

54

» Detailed Hint the student is given the detailed message associatedhgitfirst violated
constraint;

« All Errors: the student is given hint messages for all violated cainss;
» Show Solutionthe complete solution to the current problem is shown tatigest.

The default feedback-presentation strategy in ASPIRE &art fromPositive/Negativeon the first
submission, and then increase the level for each subsequentsiahmi#til theDetailed Hintlevel is
reached, and then stay at that level for all later ssgions. However, the student has the option to ask
for a specific level of feedback on each submission.

The teacher can disable some feedback levels, if approfri@edeacher is also given an opportunity
to modify the default feedback-presentation strategy. Therea i drop-down box labelled
Level to stop at (for automatic level increpsethe teacher can modify the default levBletailed
Hint) by selecting another level from the list. The teacheratem specify the maximum number of
feedback messages to show to the student agltigrrors level. The default value for this option is
zero, which means that all feedback messages wilhiogvn, i.e. as many hints as there are errors
(violated constraints). The default option for full solutisrthat the student can request it whenever
they want (default value of zero). The teacher can, howepcify the minimal number of
submissions the student must make before he/she will be dltoveee the full solution.

When showing Positive/Negative Feedback, ASPIRE will, bgulefshow the total number of errors.

The teacher can modify this default behaviour by requiriag ttie student be only told that there are
some errors in his/her solution.

4.3.4. Assigning Pedagogical Settingsto Students

If there is more than one PS defined for a domain,niegessary to assign them to students within the
group. Figure 66 shows two pedagogical settings definedd@apital Investment Decisiaiomain.

55

<< Group Management | Set Domains for "ACCT101"

..

__

| Assign Domain |Fracti0n Addition | to Group .
¢ Submit |

..

i Domains :

Capital Investment Decision Unassign Domain

Pedagogical Settings Assign Pedagogical Settings to Students Define New Pedagogical Setting
| ACCT101-settings Edit Delete

ACCTi01l-settings2 Edit Delete

Lagout Powerad h-,-ﬂSi" RE
Figure 66. A group with two sets of pedagogical settings

The teacher then needs to allocate pedagogical setting tetememt in the group. To achieve that,
the teacher clicks thi&ssign Pedagogical Settings to Studdints which shows the page in Figure 67.

56

Assign Pedagogical Settings

__

1 Users ACCT101-sethings ACCT101-settings2

amanda * (@ Wiew Student Model
. . brent lc O Wiew Student Model
devon ol & Wiew Student Model
moffat # (@ Wiew Student Model
nancy lc O Wiew Student Model
nick ol & Wiew Student Model I I
pramudi o Wiew Student Model
tanja lc O Wiew Student Model

Randamize |
1 Settings to Randomize Between:

[V ACCT101-settings ™ ACCT101-settings2

Logout Powered bgﬂSi’RE

Figure 67. Assigning pedagogical settings to students

The assignment can be done manually, in which case the teaebds to select a PS for each
individual student by selecting one of the radio buttons. Bhigiament can also be done in a random
fashion - to achieve that, the teacher click Randomizebutton, the effect of which is shown in
Figure 68.

57

Assign Pedagogical Settings

__

__

1 Users ACCT101-settings ACCT101-settings?

' ' amanda % 8 Wiew Student Model

: brent 1o C View Student Model
devon ol O Yiew Student Model
moffat ol 8 Wiew Student Model : ;
nancy [o Wiew Student Model ' '
nick L o Yiew Student Model I
pramudi o Yiew Student Model
tanja [o Wiew Student Model

__

Randaornize |

' Settings to Randomize Between:

¥ aCCTi01-settings M ACCT101-settings2

Logout Powered byﬁsf RE

Figure 68. Random assignment of pedagogical settings to students

The View Student Moddink allows the teacher to see statistics about the stsdanowledge of the
instructional domain. The teacher will see the list obpmms the students has solved correctly, and
also statistics about constraint use.

4.3.5. Requesting action

The teacher (and other types of users) may requesingdb be taken within ASPIRE. This is
supported through the Request Action tab, shown in Figurélf&user may type the request, which
will be emailed to administrators.

58

| Home || My Dromains || Request Action || My Account || Logout |
Request Action
Make request to admins
E Enter Your Regquest Here ;I
| =
EEn
Powerad byﬁSh’EE

Figure 69. The Request Action page

4.4. Student

When a student logs into ASPIRE, he/she will be takehd®student home page. Figure 70 shows an
example of a student home page. The student who this pageeateddior has been granted access to
one instructional domain. If there are several instructidoatains a student has the right to access,
the home page will show multiple links.

At the top of the page, there are five tabs, which are daitan all pages available to students. The
Hometab brings the student back to this page. MigeDomainstab allows the student to see all the
domains he/she has access to. Request Actiotab was already discussed in Section 4.3.5.M¥ye
Accountpage allows the student to modify his/her profile. UselLibgout tab/link to terminate the
session with ASPIRE.

59

Home

i Available Domains

i Capital Investment Decision

Logout

Powerad bgﬂ.Si’RE
Figure 70. The Student Home Page

When a student selects a domain (by clicking the appropridteoti the home page or on the My

Domains page), he/she will be given the problem-solving inteflacthe chosen domain. Figure 71
shows the problem-solving interface for the domain the stidenselected.

Selectone...

Capital Investment Decision

Mext Problern

Change ITS
P
C

v Engineering Ltd is considering a capital expenditure that requires an initial investment of $10 000

photo

and provides a net cash flow of $3 500 per year for four years, The firm has a required return of 12
percent.

le text will be shown here. ..

casnnows |1 [cF1] [cFa] [or3] [cra] [crs| [cral [cr7] [ore] [cora] [creq [crt [crt [cFt [cred [cFid

Period

ol v][] el lallys][] [v]lye][ya][no] [n1] [s12] [3] [n4] [15]

I Puositive/MNegative Feedback j

Submit

Logout

Powerad byASVRE
Figure 71. The problem-solving interface for an instructional domain

60

4.5. Developer

Developers have all the privileges of authors, with the amtditi privilege of being able to make
changes to the domain model. A developer can add new corsstragintvell as delete or modify
constraints generated by ASPIRE (in the Syntax/Semauwiist@ints tabs). The developer can also
test the constraints (in th€est Constraintstab), as well as add/modify/delete domain-specific
functions (in theddomain Functiortab).

The process of developing constraints is similar to pmogning; the developer is a person with
significant experience in programming and knowledge engineeringdéWeoper understands the
constraint language used by ASPIRE, and must also havecalkeat grasp of constraint evaluation
within ASPIRE and Lisp, which is the programming language A&PiRbased on. Within this
manual, we do not present the details of constraint ei@hjatonstraint language and Lisp. The
interested reader is referred to the developer docuriwnfitat

5. Conclusions

This document illustrated authoring support provided by ASPAatgor, as well as the functionality
of ASPIRE-Tutor, the deployment environment. ASPIRE is abkldreely on the Weéb The
ASPIRE team would be grateful for any feedback on IRERPand this user manual.

6. References

1. Decker, S., Melnik, S., van Harmelen, F., FenselKIzin, M., Broekstra, J., Erdmann, M., Horrocks, .
(2000) The Semantic Web: The Roles of XML and RDF. |IEEErtret Computing, 4(5), 63-74.

2. Gruber, T.R. (1993) A Translation Approach to Portableof@gy Specification. Knowledge Acquisition, 5,
199-200.

3. Hendler, J. (2001) Agents and the Semantic Web. IEEHi¢iaiet Systems, 16(2), 30-37.

4. Hendler, J. (2005) Knowledge is Power: a View from thm&wdic Web. Al Magazine, 26(4), winter 2005,
76-84.

5. Mitrovic, A., Suraweera, P., Martin, B., Zakharov, Kiilik, N., Holland, J. (2006) Authoring constraint-
based tutors in ASPIRE. M. Ikeda, K. Ashley, and T.-\WaiC(Eds.) Proc. 8th Int. Conf. on Intelligent
Tutoring Systems ITS 2006, LNCS 4053, pp. 41-50.

6. Noy, N., McGuinness, D. (2001) Ontology Development 101: idésio Creating your First Ontology.
Stanford Knowledge Systems Laboratory Technical Rep8ti-81-05 and Stanford Medical Informatics
Technical Report SMI-2001-0880.

7. Suraweera, P., Mitrovic, A., Martin, B. (2005) A knowledgejuisition system for constraint-based
intelligent tutoring systems. In: C-K Looi, G. McCalB. Bredeweg, J. Breuker (eds) Proc. Artificial
Intelligence in Education AIED 2005, I0S Press, pp. 638-645.

8. Suraweera, P., Mitrovic, A., Martin, B. (2007) Consttadathoring System: an empirical evaluation. R.
Luckin, K. Koedinger, J. Greer (eds) Pra&" Int. Conf. Artificial Intelligence in Education AIED 2007
Los Angeles, 451-458.

4 pPlease emailanja.mitrovic@canterbury.ac.ha obtain a user account for ASPIRE, and additional
information.

61

INDEX

Abstractbox, 17

Add a component, 26

Add a new affiliation, 48

Add a new domain, 7

Add a new group, 51

Add a new problerbutton, 32

Add a new solutiobutton, 38

Add a relationship, 21

Add a slot, 17

Add a step of a procedural task, 10
Add Constrainbutton, 41

Adding a user, 47

Adding problems, 32

Adding solutions, 36

Administrator, 45

Affiliationstab, 48

Architecture of ASPIRE-Author, 9
Arrow tool, 15

ASPIRE Home page, 7
ASPIRE-Author, 5

ASPIRE-Tutor, 5

Assigning users to groups, 53

at leastbox, 19

at mostbox, 19

Authoring serverSeeASPIRE-Author
Authoring steps, 8, 9

Authoringtab, 51

Backup and Restottautton, 12
Booleantype, 19

Choose applébutton, 30
Components of a repeatable step, 28
Create a concept, 15

Default student interface, 28
Define Pedagogical Setting page, 56
Delete solutiorbutton, 38

Deleting a slot, 17

Deleting a step of a procedural task, 11
Deleting an existing domain, 8
Deploy a domain, 49

Deploy Domain button, 42
Deployment, 42

Deployment tab, 42

Developers, 44

Diagnostic Module, 44
Displayradio button, 31

Domain Function64

Domain Functiongab, 44

Domain Manager, 44

62

Domainpage, 10

Domain structure, 10

Domain testing, 43

Domain type, 10

Edit general statemetnutton, 33
Element Count26

Feedback levels, 57

Finish tool, 15

Float type, 18

Free textbox, 22, 25

Generate constraintisutton, 40, 41
Group, 51

Group Management, 53
Groupspage, 51

Groupstab, 53

HTML interface, 28

Ideal solution, 37

Inheritance, 20

Instructional domain, 7

Integer type, 18

Intelligent Tutoring Systems, 5
is-a relationship, 15

ITS managememage, 49

Lisp, 64

Logging out, 8

Login procedure, 6
Logouttab/link, 62
Logspage, 50

Logstab, 44

Managelink, 50

Modifying a slot, 17

Multiple box, 18

My Accountpage, 62

My Accountab, 53

My Domainspage, 52

My Domaingab, 53, 62

New Pagebox, 11

Next Problenoption, 56
Ontology, 13

Ontology Workspace, 14
Ontology Workspace drawing area, 15
Openning a domain, 7

Optional checkbox, 18
Pedagogical Module, 44
Pedagogical setting$5
Pedagogical Settings to Studelits, 59
Positive/Negative Feedback, 58

Problem and Solution Representation
page, 24

Problem components, 25

Problem difficulty, 33

Problem Editor, 32

Problem editortab, 31

Problem name, 32

Problem selection strategies, 56

Problem sets, 12

Problem Specific Instructiobox, 35

Problem Specific Instructiort®ox, 11

Problem statement, 24

Problem structure, 24

Problem Structureéab, 24

Problem’s attributesrea, 32

Problem-solving interface, 63

Procedural domains, 10

Property, 17

Randomizéutton, 60

Rectangle tool, 15

Relationship, 17

Remove Selected Users From Group
button, 53

Repeatabldox, 11

Request Actiotab, 62

Requesting actions, 61

Resetutton, 53

Re-using components, 27

Savebutton, 33

Save solutiorbutton, 38

Save structurdutton, 12, 26

Save/Load a domain, 8

Saving the ontology, 15

Saving the problem, 36

Select a problem set, 32

Select Problem-sdautton, 32

Selecting an applet, 31

Selectiorbox, 27

Semantic constraints, 41

63

Semantic constraintsb, 41

Session Manager, 44

Set Domains page, 54, 55

Slot name, 17

Slot type, 17

Slots, 17

Solution structure, 24, 25

Sorting the problems, 39

Specialisation/Generalisation relationship,
14

Specifying Pedagogical Settings, 56

Specifying problem text, 34

Starting a new ontology, 15

starting a tutoring systerSeeDeployment

String type, 18

Student home page, 62

Student Home page, 62

Student Interface Builder, 28

Student Modeller, 44

Symbol type, 19

Syntactic constraints, 40

Syntax constrainttab, 40

System's Choiception, 56

Task requirement, 24

Teacher, 52

Teacher home page, 53

Test Constraintsab, 44, 64

Trash can tool, 15

Tutoring serverSeeASPIRE-Tutor

Undo/Redo last action, 15

Upload button, 35

User Managemeryage, 46

User Manager, 45

Userstab, 46

View all problemsutton, 39

View all solutions for this probletoutton,
37

View Student Modédink, 61

View/Assign Userbnk, 54

