
 

 
 
 

 
 

USER MANUAL 
 

Version 4.0 

22.11.2007 

 
 
 

 
Antonija Mitrovic 

Brent Martin 

Pramuditha Suraweera 

Nancy Milik 

Jay Holland 

Konstantin Zakharov 
 
 
 

Intelligent Computer Tutoring Group 

University of Canterbury 

Christchurch, New Zealand 



 2 

Contents 
 
 
List of Figures ....................................................................................................................... 3 
1. Introduction ....................................................................................................................... 5 
2. Logging on to ASPIRE ...................................................................................................... 6 
3. The Authoring Process....................................................................................................... 8 

3.1. Modelling domain structure ........................................................................................ 9 
3.2. Composing the domain ontology............................................................................... 12 

3.2.1. Ontology Development ...................................................................................... 12 
3.2.2. Ontology Workspace.......................................................................................... 13 

3.3. Modeling the problem/solution structures..................................................................22 
3.3.1. Modeling the solution structure for non-procedural tasks.................................... 23 
3.3.2. Modelling the solution structure for procedural tasks.......................................... 24 

3.4. Designing the student interface ................................................................................. 26 
3.5. Problem/Solution Editor............................................................................................ 29 

3.5.1. Selecting a problem set....................................................................................... 30 
3.5.2. Adding problems................................................................................................ 30 
3.5.3. Adding solutions ................................................................................................ 34 
3.5.4. Re-arranging problems ....................................................................................... 37 

3.6. Generating syntactic constraints ................................................................................ 38 
3.7. Generating semantic constraints ................................................................................ 39 
3.8. Deploying the tutoring systems ................................................................................. 40 
3.9. Additional Pages for Developers ............................................................................... 42 

4. ASPIRE-Tutor ................................................................................................................. 42 
4.1. Logging in to ASPIRE-Tutor .................................................................................... 43 
4.2. Administrator............................................................................................................ 43 
4.3. Teacher ..................................................................................................................... 50 

4.3.1. Group Management............................................................................................ 50 
4.3.2. Assigning Domains to Groups............................................................................51 
4.3.3. Specifying Pedagogical Settings......................................................................... 53 
4.3.4. Assigning Pedagogical Settings to Students........................................................ 55 
4.3.5. Requesting action ............................................................................................... 58 

4.4. Student...................................................................................................................... 59 
4.5. Developer ................................................................................................................. 61 

5. Conclusions ..................................................................................................................... 61 
6. References ....................................................................................................................... 61 
Index               65 

 



 3 

List of Figures 

Figure 1. The Architecture of ASPIRE................................................................................... 5 
Figure 2. The Login Page....................................................................................................... 6 
Figure 3. The Home Page on ASPIRE-Author ....................................................................... 8 
Figure 4. The Architecture of ASPIRE-Author ...................................................................... 9 
Figure 5. The Domain Details page...................................................................................... 10 
Figure 6. A domain with a repeatable step (Equation-Solving) ............................................. 10 
Figure 7. Backup and Restore facility .................................................................................. 11 
Figure 8. The ontology of the Fractions domain ................................................................... 13 
Figure 9. Ontology Workspace ............................................................................................ 14 
Figure 10. Ontology Workspace showing the Fractions ontology......................................... 15 
Figure 11. Adding a new slot ............................................................................................... 16 
Figure 12. Specifying a range of values ............................................................................... 16 
Figure 13. Adding a property of type Boolean...................................................................... 17 
Figure 14. Adding a property of type symbol ....................................................................... 17 
Figure 15. Slots of the Number concept ............................................................................... 18 
Figure 16. Inherited and local properties .............................................................................. 19 
Figure 17. Adding a relationship .......................................................................................... 20 
Figure 18. Specifying a set of concepts for a relationship..................................................... 20 
Figure 19. Specifying a free-text relationship....................................................................... 21 
Figure 20. Properties and relationships of the Fraction concept ............................................ 21 
Figure 21. Initial state of the problem/solution representation for the SQL queries domain .. 22 
Figure 22. Initial state of the problem/solution representation for the Fractions domain ....... 23 
Figure 23. Specifying the solution structure for a non-procedural task ................................. 24 
Figure 24. The solution structure with the initial component specified ................................. 25 
Figure 25. The complete solution structure for fraction addition........................................... 25 
Figure 26. Reusing components from previous steps............................................................ 26 
Figure 27. The initial interface for the Mechanics domain....................................................27 
Figure 28. Specifying an applet to replace the default interface............................................ 28 
Figure 29. Uploading applets ............................................................................................... 28 
Figure 30. Selecting applets ................................................................................................. 29 
Figure 31. The initial state of the Problem Editor................................................................. 29 
Figure 32. The initial state of the problem editor for the domain which contains several 
problem sets ........................................................................................................................ 30 
Figure 33. The selection of a problem set............................................................................. 30 
Figure 34. Adding a new problem........................................................................................ 31 
Figure 35. Adding a problem statement................................................................................ 31 
Figure 36. Adding a fraction addition problem..................................................................... 32 
Figure 37. Specifying the structure of problems with three components ............................... 32 
Figure 38. Adding problem-specific components ................................................................. 33 
Figure 39. Adding problem-specific instructions for a step................................................... 34 
Figure 40. Adding a solution................................................................................................ 34 
Figure 41. Specifying the ideal solution ............................................................................... 35 
Figure 42. Entering a solution to problem 2 ......................................................................... 36 
Figure 43. Deleting a solution .............................................................................................. 37 
Figure 44. Viewing problems............................................................................................... 37 
Figure 45. The initial state of the Syntax Constraint page..................................................... 38 
Figure 46. Generated syntactic constraints ........................................................................... 39 



 4 

Figure 47. Generating semantic constraints.......................................................................... 40 
Figure 48. Deploying a domain............................................................................................ 40 
Figure 49. Successful deployment of a domain .................................................................... 41 
Figure 50. The Deployment page with warnings .................................................................. 41 
Figure 51. Domain with errors ............................................................................................. 41 
Figure 52. The architecture of ASPIRE-Tutor...................................................................... 43 
Figure 53. The administrator home page .............................................................................. 44 
Figure 54. The User Management page................................................................................ 45 
Figure 55. Adding multiple users at once ............................................................................. 46 
Figure 56. Retrieving information about existing users ........................................................ 47 
Figure 57. The Affiliations page .......................................................................................... 47 
Figure 58. The ITS Management page ................................................................................. 48 
Figure 59.  The Logs page ................................................................................................... 49 
Figure 60. The Group Management page ............................................................................. 49 
Figure 61. The Teacher Home Page ..................................................................................... 50 
Figure 62. The Group Assignment Page............................................................................... 51 
Figure 63. The Set Domains Page ........................................................................................ 52 
Figure 64. The modified Set Domains Page ......................................................................... 53 
Figure 65. Specifying pedagogical settings .......................................................................... 54 
Figure 66. A group with two sets of pedagogical settings..................................................... 56 
Figure 67. Assigning pedagogical settings to students.......................................................... 57 
Figure 68. Random assignment of pedagogical settings to students...................................... 58 
Figure 69. The Request Action page .................................................................................... 59 
Figure 70. The Student Home Page...................................................................................... 60 
Figure 71. The problem-solving interface for an instructional domain.................................. 60 



 5 

1. Introduction 

ASPIRE is an authoring system that supports teachers in developing Intelligent Tutoring Systems 
(ITSs) for their courses. This document is a user manual; it is aimed at authors, i.e. domain experts 
who want to develop ITSs, and do not necessarily have experience in computer programming and/or 
ITSs. The document explains how to use different components of ASPIRE, but it will not teach the 
basic concepts underlying ITSs. For more information about the necessary steps in building ITSs, 
please consult our training material (The Authoring Primer).  

Intelligent Tutoring Systems are knowledge-based, adaptive systems the goal of which is to simulate 
the behaviour of a good human teacher. These systems typically support the student while learning 
problem-solving skills in a particular instructional domain. An ITS tracks the student’s behaviour, 
analyses the behavioural data and produces/maintains a model of the student’s knowledge. This model 
is later used to adapt instructional sessions towards the needs, learning abilities and preferences of the 
student. ITSs are knowledge-based because they contain explicitly represented domain knowledge, 
which can be used to analyse students’ solutions against, and/or to solve problems given to students. 
The generated student model is used to tailor pedagogical decisions, such as selecting/generating 
problems and feedback.  

Numerous ITSs have been developed, but only a very small number of them are used in real 
classrooms. This problem comes from the fact that ITSs are complex systems, which require a lot of 
time, resources and knowledge to be developed. Some researchers estimate the time needed to develop 
one hour of instruction within an ITS to be around 300 hours. It is therefore not surprising that 
authoring systems are sorely needed in the area of ITSs. Authoring systems support and/or automate 
the process of ITS development, by making it possible for a non-computer specialist to develop ITSs.  

The ASPIRE project is funded by the e-Learning Collaborative Development Fund grants 502 and 
592. ASPIRE supports the process of developing ITSs by automating some tasks, and supporting the 
remaining tasks, thus making it possible for tertiary teachers with little background in programming 
and Artificial Intelligence to develop systems for their courses. The resulting educational systems will 
overcome the deficiencies of existing distance learning courses and support deep learning.  

ASPIRE consists of ASPIRE-Author, the authoring server, and ASPIRE-Tutor, the tutoring server, 
which delivers the resulting ITSs to students (see Figure 1). ASPIRE-Author makes it possible for the 
human expert (the author) to describe the instructional domain and the tasks the students will be 
performing, as well as to specify problems and their solutions. Once an ITS has been specified in 
ASPIRE-Author, the tutoring server delivers the developed system to the student.  

 

Figure 1. The Architecture of ASPIRE 



 6 

This document describes the authoring side of ASPIRE first. We start by describing the login 
procedure in Section 2. Section 3 describes the architecture and functionality of ASPIRE-Author, 
followed by detailed instructions for authoring new intelligent tutoring systems. In Section 4, we 
briefly present the architecture of ASPIRE-Tutor, and then discuss the actions that can be performed 
by various types of users. Conclusions are given in Section 5, followed by a list of useful references.  

 

2. Logging on to ASPIRE 
 
ASPIRE is a Web-enabled system and therefore you will do all the work while developing an ITS 
within a web browser. We recommend Firefox (version 2 or above) or Internet Explorer (version 6 or 
above) as the web browser. Older versions of browsers may not display all pages correctly. The 
resolution of your display should be set at 1024x768 or higher. Lower resolutions are not supported. 
The browser window needs to maximized in order to enable the pages to be displayed properly. Java 
Runtime Environment (version 5 or above) should also be installed on the machine. 
 
Figure 2 shows the Login page, which is available at http://aspire.cosc.canterbury.ac.nz:8001. If you 
do not have account for ASPIRE, click the Register link. 

 

Figure 2. The Login Page 



 7 

To log in, you need to have a valid usercode, password and affiliation. If you cannot remember your 
password, the password will be emailed to you if you click the Forgot your password link and specify 
all the necessary information.  

Once you have successfully logged on, you will see the Home page. If you have logged on with an 
author usercode, the home page will contain the Jump to Authoring Tools link, which will take you to 
ASPIRE-Author. The same can be achieved by switching to the Authoring tab. The other tabs are 
described in Section 4 of this document. 

The Home page on ASPIRE-Author, shown in Figure 3, allows you to specify instructional domain 
(i.e. ITS) you want to work on. At the top of the page, there is a table showing names and descriptions 
of all domains you have previously worked on. If you are using ASPIRE for the first time, this table 
will be empty. In that case, you need to add a new domain. To add a new domain, you need to specify 
a unique name, a description, and then click the Add button. The newly created domain will be shown 
in the table at the top of the page. You can then open the domain.  

To select a domain from the domain table, click on the wanted domain. In the screenshot1 in Figure 3, 
the author has selected the Fraction Addition domain, and the page shows all steps of the authoring 
process. Clicking the step line takes you to the appropriate page to perform the task; note that this can 
also be achieved by clicking the appropriate tab. The steps that have been completed are shown in 
blue, while the steps that have not been attempted are shown in black. Some steps may be disabled 
(coloured grey) as they cannot be attempted until some other step is complete.  

This page also allows you to delete an existing domain, by selecting it from the list of domains you 
have created. It is also possible to Save/Load a domain definition in XML format. Saving the domain 
has the result of storing the domain (in the XML representation) on the tutoring server. The Load 
function is available for loading pre-existing domains in to ASPIRE-Author. In other words, if the 
XML representation of a domain exists on the tutoring server, it can be loaded into ASPIRE-Tutor. 
Once a domain is loaded, it appears under the domains list of the Home page. 

At the bottom of the page, there is the Logout link to use when you want to logout from ASPIRE-
Author, which appears at the end of each page in the system. 

 

                                                
1 Please note that the type of account determines which tabs would be available (i.e. visible). The screenshots in 
this manual were generated using a developer account. For example, the Test Constraint and Domain Functions 
tabs are only available to developers. 



 8 

 

Figure 3. The Home Page on ASPIRE-Author 

 

3. The Authoring Process 

The development of the domain model is the most complex and time-consuming task in the 
development of an ITS. ASPIRE supports this process by automating some of the tasks required, and 
providing support for authors. The authoring process in ASPIRE consists of the following eight steps:  

1. Modelling the domain structure; 
2. Composing the domain ontology; 
3. Modelling the problem and solution structures; 
4. Designing the student interface; 
5. Adding problems and solutions; 
6. Generating syntax constraints; 
7. Generating semantic constraints; 
8. Deploying the domain. 

The architecture of ASPIRE-Author is illustrated in Figure 4. This manual describes some of the 
functions of various components, but does not provide the details of implementation. The 
Authoring Controller is the central component which manages the authoring process and 
communication between the various components of ASPIRE-Author. The Domain Structure Modeller 
supports step 1 of the authoring process, by allowing the author to specify the general characteristics 
of the chosen instructional domain. This information is stored as the initial part of the domain model. 
The author then specifies the domain ontology using the Ontology Workspace (step 2). The 
Problem/Solution Structure Modeller allows the author to specify the structure of problems and 
solutions in the domain (step 3). The Student Interface Builder supports the author in specifying the 
initial version of the student interface (step 4), which will be used to communicate with students. The 
author uses the Problem/Solution Editor to provide examples of problems and their solutions (step 5). 



 9 

On the basis of all specified information, the Constraint Generator develops the domain knowledge 
necessary for the ITS to be able to analyse students' solutions (step 6). This knowledge is represented 
in terms of constraints, which describe the syntax and the semantics of the instructional domain. The 
generated constraints are validated in step 7. The developed domain models are maintained by the 
Domain Model Manager.  

 

Figure 4. The Architecture of ASPIRE-Author 

You will now learn how to perform each of these steps within ASPIRE-Author. 

3.1. Modelling domain structure 

The domain structure needs to be defined for each instructional domain. You can view/specify details 
of domain structure for the currently selected domain by clicking on the Domain tab of the authoring 
interface.  

The Domain page illustrated in Figure 5 shows the details of the Fractions domain. The name and 
description of the selected domain are shown at the top of the page. This page also allows you to 
modify the description of the domain, without having to go back to the previous page. Note, however, 
that the domain name cannot be changed.  

The Type of the domain refers to the nature of the task students will be performing in the ITS. ASPIRE 
offers two possibilities: procedural or non-procedural tasks. A procedural task contains a number of 
steps that need to be performed in a specified order. The Fractions domain contains procedural tasks: 
the student will need to specify the least common denominator for the two fractions to be added 
initially, and then (if necessary) modify the fractions. Then in step 4, the student needs to add the two 
fractions, and finally, in step 5, the resulting fraction might need to be simplified. Therefore, the task 
of adding fractions is a procedural one (notice that the Procedural option is selected in Figure 5). If 
tasks for the chosen domain do not require such a set of steps, but rather students can perform actions 
in any order, select a non-procedural task.  

For a procedural task, it is necessary to add a set of steps. Once you specify that the task is procedural, 
ASPIRE will add a table showing steps, which is initially empty. To add a step, click on the + button, 
which will add a new row to the table. Each step has a unique number, generated automatically. The 
step name is what the students will see when they solve problems, as the label assigned to one of the 



 10 

interface components. Therefore it is important to give meaningful names to steps. The description of 
the step provides additional information to the student.  

 

Figure 5. The Domain Details page 

If the step is to be shown to the student on a new Web page, tick the New Page box. If this option is 
ticked, there will be a separate Web page for this step. Alternatively, you may specify several steps to 
be shown to the student on the same Web page. All steps defined for the Fractions domain in Figure 5 
will be shown to the student on the same page. 

To delete a step, select it first by ticking the box at the beginning of the corresponding row, and then 
click the – button. To change the order of the steps, tick the box at the beginning of a row that you 
want to bring upward, and then click the ^ button, as many times as necessary to bring the step at the 
desired position.  

As specified previously, the task description will be shown to the student for each problem. If you 
want to have additional problem-specific instructions for one or more steps, tick the Problem Specific 
Instruction box for the appropriate steps.  

 

Figure 6. A domain with a repeatable step (Equation-Solving) 

The Repeatable box allows the author to specify that the same step might be repeated several times. If 
this box is not selected, ASPIRE will assume that the step is to be done only once by a student. When 



 11 

the box is ticked, it will be possible to have several iterations of the same step. Figure 6. A domain 
with a repeatable step (Equation-Solving) illustrates a procedural domain with two steps, the second 
one being repeatable. Please note that a repeatable step is always the only step on a page.  

The bottom part of the page is used to specify sets of problems for students to solve. In certain 
domains, problems can be classified into groups, containing problems that require the same skill. For 
example, in the domain of fractions, we might identify different sets of problems, dealing with fraction 
addition, fraction multiplication etc. In the domain of English, different problem sets might include 
turning verbs into nouns, adjective comparisons, past tense of verbs, work endings etc. Initially, 
ASPIRE-Author shows only one problem set. In Figure 5, there is only one set of problems. You can 
modify the name and description of the problem set. Please note that the scaffolding has not been 
implemented yet. To add/delete problem sets, use the +/- buttons.  

Once you have finished describing the domain, steps and problem sets, click the Save structure button. 
This will lead you to the Domain Ontology page, which is described in the next section.  

Finally, the Backup and Restore button facilitates experimenting with the domain. It allows a version 
of the domain to be saved under a name chosen by the author. When the button is clicked, a pop up 
window appears with two sections: back up and restore (see Figure 7). The back up section allows the 
current state of the domain to be saved. The author can always save the current state of the domain, 
and make modification to the domain. If the author wants to go back to the saved state of the domain, 
loosing all newer changes, the appropriate label from the restore drop down menu has to be selected 
and 'restore' should be clicked. 

 

Figure 7. Backup and Restore facility 

 

 

 



 12 

3.2. Composing the domain ontology 

An ontology describes the structure of the domain by showing the basic domain concepts, their 
properties and the relationships between concepts. A widely accepted definition is that an ontology is a 
specification of a formalisation (Gruber, 1993); in other words, it is an explicit, formal specification of 
the domain vocabulary which presents a common understanding of topics that can be communicated 
between users and applications. An ontology thus enables all the people involved to speak the same 
language, supporting knowledge sharing by applications and reuse. An ontology makes domain 
assumptions explicit, so that it is easier to change the domain description, as well as to understand and 
update existing data. An important feature of ontologies is that they separate domain knowledge from 
operational knowledge, in the same way in which a database schema is separated from the actual data 
stored in a database, thus introducing a high level of flexibility.  

Initially, ontologies have been introduced within the field of Artificial Intelligence, but are now 
becoming widely used on the World Wide Web, as the foundation for the Semantic Web. In contrast 
to a large number of documents linked together, a Semantic Web is a huge network of machine-
understandable and machine-processable human knowledge (Decker et al., 2000; Hendler, 2001, 
2005). The WWW Consortium (W3C) has proposed several languages for encoding knowledge on the 
Web so that it can be used by intelligent agents to improve their performance. Key application areas of 
ontologies include e-commerce and search engines, among others.  

In simple terms, an ontology represents a hierarchical organization of all important concepts in a given 
domain. Ontologies play a crucial role in ASPIRE. As the goal of ASPIRE is to make it possible for 
teachers to develop ITSs for their courses, the authoring process supported by ASPIRE relies on the 
domain ontology. Instead of asking the domain author (i.e. the teacher) to manually encode domain 
knowledge using a specific knowledge representation language, ASPIRE requires the author to 
describe the instructional domain by specifying the domain ontology. This is a much simpler 
requirement, as the author does not have to learn the knowledge representation language and the 
specifics of a particular approach to using domain models. Teachers are already aware of domain 
ontologies, even though they might have a simplified (i.e. informal) representation. In addition to 
specifying the domain ontology, the author is required to provide examples of problems and their 
solutions. ASPIRE-Author then analyses all three sources of knowledge (ontology, problems and 
solutions), and induces the domain model (represented in terms of a set of constraints, as discussed in 
Sections 3.6 and 3.7).  

The ontology composition stage is the second phase of the authoring process. During this stage, the 
author develops the domain ontology using the Ontology Workspace, which is one of the components 
of ASPIRE-Author (as illustrated in Figure 4). If you are creating a new domain model (i.e. a new 
ITS), you would be taken to the Ontology Workspace after you specify the domain structure. 
Alternatively, you can get the Ontology Workspace by clicking the Ontology tab of the main interface.  

In Section 3.2.1, we discuss the process of ontology development in general. Section 3.2.2 then 
discusses the Ontology Workspace, the component which supports the author while specifying the 
ontology. The following subsections describe the steps in developing an ontology, and illustrate how 
they are performed in the Ontology Workspace.  

3.2.1. Ontology Development 

There is no silver bullet when it comes to ontology development; similar to other design tasks, 
ontology development is under-specified and ambiguous. Therefore, there is neither one correct 
approach to ontology development, nor a single best ontology for a particular domain (Noy and 
McGuinness, 2001). In order to specify a domain ontology, the author needs to specify domain 
concepts, their properties and relationships between concepts. Each ontology will reflect the author’s 
subjective view of the domain, and of the importance of domain concepts. The process is always 



 13 

iterative. Initially, it is necessary to decide on the scope of the ontology - how much of the domain will 
it cover? Generally, it is possible to reuse existing ontologies available on the Web, although there are 
a few ontologies available for educational domains that are directly applicable. In ASPIRE, we assume 
that authors will develop their own ontologies from scratch.  

When developing an ontology, it is necessary to identify the important domain concepts. Roughly 
speaking, these concepts will include all types of entities appearing in the domain that students need to 
know about. When developing the ontology, it is useful to think about the interface the students will 
use to solve the problem; all the components appearing in the interface need to be described in the 
ontology as well. 

Some domain concepts will be arranged into a taxonomy (i.e. a hierarchy, a tree), using the 
specialisation/generalisation relationship. This relationship is also commonly referred to as the is-a 
relationship, or the a-kind-of relationship. Taxonomy can be specified using a top-down or a bottom-
up approach, or a combination of the two, which is probably most common. When using the top-down 
approach, the ontology is developed starting from the most general concepts, which are then refined 
into subclasses. The bottom-up approach, on the other hand, starts from specific concepts which are 
generalised into superclasses. Every concept in the ontology is important because of its properties 
and/or relationships to other concepts; therefore, properties and relationships need to be defined. The 
properties of a concept will be inherited by all of its subconcepts.  

In this manual, we use fraction addition as an example instructional domain, to illustrate the various 
functions supported by ASPIRE. When learning about fraction addition, students should know about 
different kinds of numbers (whole numbers and fractions). Therefore, this suggests that the Number 
concept should be the root of the hierarchy, with whole numbers and fractions as specific subtypes. 
Furthermore, there are different kinds of fractions: proper fractions have numerators that are smaller 
than their denominators, while the opposite is true for improper fractions. Improper fractions can be 
further simplified. Based on this analysis, the ontology for this domain can be the one shown in Figure 
8. Note that other possibilities exist for representing the same domain concepts. Also, we have not 
discussed properties and relationships between these concepts; they will be introduced in Section 
3.2.2.  

 

Figure 8. The ontology of the Fractions domain 

There are many ontology-development tools available, most popular of which are Protege 
(http://protege.stanford.edu/), Ontolingua (http://www.ksl.stanford.edu/software/ontolingua/) and 
OilEd (http://oiled.man.ac.uk/). These tools support different ontology languages and vary in terms of 
their expressiveness, reasoning abilities and support for users. ASPIRE contains an Ontology tool that 
will allow you to specify the ontology for your domain.  

3.2.2. Ontology Workspace 

After logging in, specifying the domain to work with and completing the definition of a domain, the 
author will be taken to the Ontology Workspace, which is initially empty (as in Figure 9). Note that 
the name of the instructional domain is shown at the top of the page. To show different features of 
Ontology Workspace, we will use the ontology shown in Figure 8.  



 14 

In ASPIRE, ontologies are represented in terms as hierarchies, in which concepts are related via the 
'is-a' relationship. The Ontology Workspace (Figure 9) is a graphical ontology-development tool, 
which supports a rich knowledge model. The taxonomy is represented as a set of concepts (rectangular 
boxes) connected with arrows, representing the is-a relationship. Note that the bar at the top of the 
drawing area contains a set of tools that can be used to draw the ontology and manage it. The rectangle 
and arrow tools are used to draw the hierarchy (i.e. to draw concepts and relationships between them). 
In addition to these two tools, there is also a tool for starting a new ontology (the empty page tool), the 
tool for deleting the currently select element of the ontology (the trash can tool), the tools for 
undoing/redoing  the last action, the tool for saving the ontology (shown as diskette) and the finish 
tool, which has the effect of saving the ontology and leaving ASPIRE (shown as the finish flag). When 
you position the mouse over a tool without clicking on it, you will get a tool tip - a short text 
explaining what the tool does. Below this tool bar, there is a drawing pane, where the domain 
hierarchy can be drawn.  

To define the ontology, it is necessary to create the identified domain concepts, and also to specify 
their properties and relationships. In our case, we start with the Number concept. To create a concept, 
select the box tool by clicking on it, and then click on the drawing pane. This creates a box; you can 
now type the name of the concept. Alternatively, you can click the rectangle tool, then click and drag 
on the drawing pane to create a box of the desired size. To name the concept, double click on the box. 
It is also possible to change the sizes of previously defined boxes, by selecting the handles (shown as 
crosses on boxes, which turn into large dots when a box is selected), and dragging the box. To delete a 
component, click on it and then press the Delete key, or alternatively, click the garbage can tool on the 
toolbar.  

 

Figure 9. Ontology Workspace 

The arrow graphically represent the is-a relationship. The direction of the arrow should be from the 
subconcept towards a concept. To draw the arrow, click on the tool in the toolbar, and then click on 
the concept and drag towards the subconcept. The Ontology Workspace assists in connecting concepts 
with arrows by automatically connecting endpoints of the arrow with a concept handle within a range 



 15 

of 5 pixels. Figure 10 shows the screenshot of the Ontology workspace after the whole hierarchy has 
been created.  

 

Figure 10. Ontology Workspace showing the Fractions ontology 

When the author selects a concept from the taxonomy, its details are shown in the bottom section of 
the Ontology Workspace. For example, Figure 10 shows a situation when the currently selected 
concept is Number. The details panel includes a text area for adding the description of the concept and 
a table that lists the concept's slots. The description of a concept allows the author to enter an 
explanation for the chosen concept. This description is only useful for the author him/herself: it is not 
used by ASPIRE, and may help the author to provide additional information.  

The Abstract box allows the author to specify that the selected concept is an abstract concept. Abstract 
concepts are those that the student will not directly use in their solutions; such concepts might 
represent higher-level generalizations of the concepts that students will manipulate with directly. In 
other words, abstract concepts cannot be instantiated in solutions. As they do not appear in solutions, a 
domain model does not contain any constraints for such concepts. For example, the domain model 
would not check for the existence of items that are of an abstract concept type. 

Slots can be either properties of a concept that describe that concept, or relationships with other 

concepts in the ontology. To add a slot, click the button in the details panel. That results in a pop-

up window, as one shown in Figure 11. The button deletes the currently selected slot from the 

table, while the button brings up the slot definition window, so that the author can modify it.  

When adding a new slot, the name and type of a slot must be defined. The name of each slot must be 
unique. The type of the slot specifies whether it is a property or a relationship. A property describes 
one particular feature of the concept. On the other hand, a relationship is an association between the 
current concept and some other concept from the ontology.  



 16 

In Figure 11, the author is specifying the Value property of the Number concept. A property may have 
values of type Boolean, integer (i.e. whole numbers), string, float, or symbol. To see the various 
options for Type, click on the icon on the right of Any, which displays the drop-down list. Select the 
appropriate value from the menu. When specifying the type of the Value property, the author selects 
Float (meaning the number can have a real value). However, the type of a property does not have to be 
specified (i.e. the Any option may be used).  

 

Figure 11. Adding a new slot 

The Optional checkbox allows the author to specify whether the slot is optional or mandatory (i.e., 
whether there must exist a value of the property for every instance of the concept). An optional 
property means that not all objects of this type will have a value for that property.  

A property may have one or more values. For example, a number can have only one value. However, 
there are properties that can have more than one value simultaneously. For example, an object might 
have multiple colours. There are two ways to specify that a property might have multiple values. If the 
number of values is not known, but we know that there will be more than one value, it is enough to 
check the Multiple box. On the other hand, if we know that a certain property may have between one 
and three values. To do that, enter 1 into the “at least” box, and 3 into the “at most” box. Please note 
that the default value of the “at least” and “at most” box is 1 for all types of slots.  

ASPIRE-Author also allows the author to specify a range of values that a property can take. Figure 12 
illustrates a situation when the author is adding the ID property, which can take as its value any integer 
in the range of 1 to 100. To specify the range, the author enters 1 and 100 into the min and max boxes. 
The ranges can be specified for properties of the following types: integer, float and string.  

 

Figure 12. Specifying a range of values 



 17 

The Boolean type allows only two values: true and false. When specifying a property of type Boolean, 
instead of the at least and at most input boxes, the author specifies the default value, by selecting 
either True or False from the drop-down list, as shown in Figure 13.  

 

Figure 13. Adding a property of type Boolean 

If the property is of type symbol, the author needs to enumerate the allowed values (Figure 14), by 

entering them one at a time and clicking the button. To delete a previously specified value, the 

author needs to select it and click the button.  

 

Figure 14. Adding a property of type symbol 

Figure 15. Slots of the Number concept shows the screenshot of the Ontology Workspace after one 
property of the Number concept has been specified. The icon in the first column of the slots table 
indicates whether the slot is a property or a relationship. Properties are identified by and 
relationships by . In Figure 15, Value is a property.  



 18 

 

Figure 15. Slots of the Number concept 

All the properties defined for a concept would be inherited by its children (i.e. the concepts related to 
it by the 'is-a' relationship). Figure 16. Inherited and local properties shows the same ontology with 
Fraction as the selected concept. This concept inherits the Value property from the Number concept. 
To specify that the properties are inherited, the Ontology Workspace will put a different symbol in the 
appropriate row of the slot table. In Figure 16, the Fraction concept has one inherited property (Value) 
and one local property (Numerator).  



 19 

 

Figure 16. Inherited and local properties 

Note: This paragraph explains planned functionality that has not been implemented yet. A property 
that is inherited from the parent concept may be modified in the current concept. For example, 
consider the Value property defined for the Number concept. Whole number would inherit this 
property from its parent; however, the value of a whole number is not float. To make this change, click 

the button. This will bring the Slot definition window, in which you redefine the type of the 
property. Figure 3.1X shows the redefined Value property for the Whole number concept.  

Figure 3.1X. Redefined property 

To specify a relationship between the currently selected concept and another concept from the 

ontology, click the button in the Details frame, which brings up the slot definition window. After 
specifying the name of the slot, select relationship as its type. Figure 17 shows the Numerator 
relationship for the Fraction concept. Each fraction must have a numerator and a denominator, which 
are whole numbers. Whole numbers have previously been defined in the ontology. To specify the 
numerator as a component of a fraction, it is necessary to specify the relationship between Fraction 
and Whole Number. In order to specify the related concept, select an option from the drop-down list 
of concepts, which lists all the concepts from the current ontology.  



 20 

 

Figure 17. Adding a relationship 

In some cases, a relationship may involve one of a set of concepts. For example, when specifying an 
assignment (a statement that assigns a value to a variable), the author may specify that the allowed 
concepts on the right-hand side are constants (e.g. "x = 1"), variables (e.g. "x = y"), functions (e.g. "x 
= max(a,b,c)") or arithmetic expressions (e.g. "x = y + 3"). To enumerate concepts that can participate 
in the relationship, tick the List tick box next to the concept list. ASPIRE-Author will show a table 
which will hold all selected concepts. Concepts can be added to the container by selecting the 
appropriate concept from the drop-down list, and clicking the + button. Figure 18 shows the assigned 
value relationship, when the first related concept has been added (i.e. the Number concept).  

 

Figure 18. Specifying a set of concepts for a relationship 

In certain domains, it may be the case that the student would be typing in a large part of the solution. 
In that case, it would be very complicated to specify the structure of that part of the solution directly in 
the ontology. In such cases, the author may specify that a slot of a certain concept is a relationship 
with another concept, the structure of which is not going to be described further. Figure 19 illustrates 
such a case. The clause relationship is related to the WHERE concept, and the author has ticked the 
Free text box to let ASPIRE-Author know that the student would be typing in the content of this 
concept.  



 21 

 

Figure 19. Specifying a free-text relationship 

Figure 20 shows the screenshot of the Ontology Workspace, with the currently selected concept 
having both properties and relationships. The slots table displays the type of the slot in the case of 
properties, but for relationships it shows related concepts.  

 

Figure 20. Properties and relationships of the Fraction concept 
 



 22 

3.3. Modeling the problem/solution structures 

Once the domain ontology is defined and a problem set is selected, it is necessary to specify the 
problem structure and the solution structure. To achieve this, click the Problem Structure tab. The 
Problem and Solution Representation page will be shown next. Figure 21 shows the initial state of the 
problem/solution structure for the SQL queries domain, while Figure 22 shows the initial state for the 
Fractions domain. The top portion of this page is used to specify the problem structure.  

ASPIRE assumes that each problem will contain a problem statement. In addition to that, it is possible 
to specify the task requirement - this is the description of the task that will be given to students with 
each problem, giving them additional instructions.  

For example, in the fraction addition domain, the task requirement may be "Add the following two 
fractions:", while the problem statement will specify the two fractions to be added (e.g. 1/5 + 2/3). As 
another example, let us take a look at a language tutor, which contains a set of problems dealing with 
turning verbs into nouns. All problems of this type would have the same task requirement entered just 
once by the author: “Turn the following verb into a noun”, and then each verb would be entered 
separately as the problem statement.  

 

Figure 21. Initial state of the problem/solution representation for the SQL queries domain 

To specify that there is such a task requirement, use the tick box associated with the first element 
(called Task requirement) of the problem structure interface. The text for the task requirement can be 
added in the problem editor, when problems and their solutions are added (see Section 3.6). There is 
no need to do anything about the second element (called Problem statement), as it is assumed that 
every problem will have a specific problem statement. This element is included in the interface to 
make it obvious that a problem statement will always be a part of the problem specification.  



 23 

 

Figure 22. Initial state of the problem/solution representation for the Fractions domain 

A problem may also contain a collection of sub-components that add more information to the problem 
statement. The problem components can be added into the problem components table by clicking the + 
button and removed using the – button. Clicking the + button results in a new row, which can be 
populated to add a new problem component. Problem components are described by their label and 
type. The label is displayed in the student problem solving interface next to the problem component. 
Each component can be either textual (text) or graphical (image). The components are problem-
specific, and are therefore specified when the problem is defined, in the Problem Editor (see Section 
3.6).  

Next, it is necessary to specify the structure of the solution. The solution structure is different for 
declarative and procedural tasks.  

3.3.1. Modeling the solution structure for non-procedural tasks 

The initial state of the problem/solution structure for a non-procedural domain (SQL queries) is shown 
in Figure 21. As can be seen, there is nothing shown under Solution structure, as there are no steps 
defined for this task.  

The solution structure for a non-procedural task consists of a list of solution components. The 
components can be added and removed in a manner similar to the addition and removal of problem 
components, by clicking the + and – buttons. Each solution component has a label, the type of 
elements it may hold (i.e. the concept from the domain ontology), and the number of elements it may 
hold (Element Count). Additionally, there is a Free text box for each component, which needs to be 
ticked if the student can freely type the content of the component. The free text type determines that 
the component should be displayed in the student problem solving interface as a text box. Figure 23 
shows the structure of solutions in the SQL domain. Each solution contains six components, defined in 
terms of corresponding domain concepts. As can be seen from the figure, each component has exactly 
one element, and is of free text type, which means that the student will be asked to type the content of 
each component into a text box in the problem-solving interface.  



 24 

 

Figure 23. Specifying the solution structure for a non-procedural task 

3.3.2. Modelling the solution structure for procedural tasks 

The interface for modelling the structure of solutions for procedural tasks (see Figure 22) is similar to 
the interface for declarative tasks. The main difference is the presentation of the solution structure. As 
each problem solving step requires a solution which may contain several parts, the composition of 
solutions for each step has to be modelled separately. Consequently, the solution structure for 
procedural domains consists of a collection of solution component lists, one for each problem solving 
step.  

Initially, as can be seen in Figure 22, ASPIRE will list the steps that have been defined for the task of 
adding fractions. For each step, there might be one or more components of the solution that the student 
will need to specify. To add a component for a step, click the + button in the corresponding row of the 
table. Then specify the label for the component, the corresponding concept from the domain ontology 
and how many elements the student may enter. There are four options available for the Element Count:   

• exactly 1, meaning that there is only one element which is mandatory; 
• at least 1, meaning that there may be one or more elements of this type in the solution; 
• 0 or 1, meaning that the component is option. If it exists in the student’s solution, there could 

be only a single element specified. 
• 0 or more, meaning that the component is optional, but may have multiple elements if 

specified. 

For example, in the first step of adding fractions, the student needs to specify the lowest common 
denominator, which is a single number. To add this component, the author would specify the label the 
student will see (such as Lowest Common Denominator), and select the LCD concept from the options 
listed, and finally specify that there is only one number to be added (as in Figure 24).  

The other components of solutions in the Fraction Addition domain (the two fractions, the sum of 
fractions and the reduced sum) are added in the same way. Figure 25 shows the complete solution 
structure. Once the solution structure is completed, click the Save structure button.  

 



 25 

 

Figure 24. The solution structure with the initial component specified 
 

 

Figure 25. The complete solution structure for fraction addition 
 

In some domains, the student will be specifying some elements of components over two (or more) 
steps. It would therefore be convenient to allow the author to re-use components defined in a 
previous step in later steps. When the author wants to add a new component to a step which has been 
defined previously, it is necessary to tick the selection box of the corresponding row in the table. 
Figure 26 shows a screenshot of the Solution Structure editor, after the author has added a new 
component to the Equation step and ticked the selection box. The interface then displays a drop-
down box from which the author can select a previously defined component (Force). 



 26 

 

 
Figure 26. Reusing components from previous steps 

 
Note that Figure 26. Reusing components from previous steps illustrates the solution structure for 
the domain previously discussed in Section 3.1. In this domain there are two steps, and the second step 
(Equation-Solving) is repeatable (see Figure 6. A domain with a repeatable step (Equation-
Solving)). The repeatable step is clearly identified in the solution structure. All the components of this 
step will be repeated for each iteration of the step.  

 

3.4. Designing the student interface 

After specifying the problem/solution structures, ASPIRE will show the student interface builder. 
Figure 27 shows the initial state of the interface for the Mechanics domain, generated automatically 
from the information the author has specified. At the top of the page, the author is asked to supply 
information about the display mode. The default option is the HTML code as shown in this figure. If 
the author accepts this default option, the student will be given the HTML interface. At the top of this 
interface, there is a set of standard buttons that students may use to select problems, get help on how to 
use the system, change the system or log out. Under the buttons, the interface displays the problem 
area, including the general instruction and the problem statement.  



 27 

 

Figure 27. The initial interface for the Mechanics domain 

The default HTML interface expects the student to type in the components of the solution. However, 
in some domains this is not a realistic expectation. For example, in Mechanics, the student will be 
drawing a force diagram, and textual input is therefore not appropriate. In such cases, the author may 
provide a domain-specific applet, a component that will support the student in performing one or more 
steps. The author needs to specify that the student interface will contain such an applet.  

If the author selects the second option, the applet will replace the HTML interface, and will include all 
solution components for that page. The state of the student interface builder for that case is shown in 
Figure 28.  

 



 28 

 

Figure 28. Specifying an applet to replace the default interface 

 

If the author specified that an applet will be used, he/she can then upload the applet by clicking the 
Choose applet button. This will bring a pop-up window, like the one shown in Figure 29. Uploading 
applets. The author needs to specify some applet-specific information (the start class path2), locate 
the applet on the local machine (via the Browse button) and upload it. Figure 29 shows a situation 
when there were no applets uploaded yet. 

 

Figure 29. Uploading applets 

 

                                                
2 For more information about applets please see developers documentation 



 29 

It is also possible to upload several applets, one after the other. The same applet can be used on more 
than one page. Figure 30. Selecting appletsillustrates a situation when the author has already 
uploaded two applets. In order to use an existing applet, the author needs to select it (by selecting the 
appropriate radio button in the Display column). In Figure 30, the author has selected CID-Step2.jar to 
be used. 

 

Figure 30. Selecting applets 

 

The author does not have to upload the applets immediately. If the author asks for a domain to be 
deployed before uploading the applets, ASPIRE will show a warning message. In that case, the author 
can upload the applets, or continue without uploading them, in which case the default interface would 
be served to the student.  

 

3.5. Problem/Solution Editor 

The next step in the authoring process is to add examples of problems and their solutions. To do this, 
click the Problem editor tab. Figure 31 shows the initial state of the problem editor. There are no 
problems to show in the list, as none have been added yet for the domain. If some problems have been 
added previously, they would appear in the drop-down menu, and it would be possible to select a 
problem from that list in order to modify or view it.  

 

 

Figure 31. The initial state of the Problem Editor 

 



 30 

3.5.1. Selecting a problem set 

For the Mechanics domain shown in Figure 31, we defined only a single problem set; therefore all 
problems added will belong to the same problem set. In other situations, as discussed in Section 3.1, 
there might be several problems sets defined. In such a case, it is necessary to select a problem set 
before a problem can be added. Figure 32 shows a screen shot for a domain containing several 
problem sets.  

 

Figure 32. The initial state of the problem editor for the domain which contains several problem sets 

The difference between Figure 31 and Figure 32 is that there are multiple problem sets in the case of 
the latter, and the interface contains an extra button at the top right (Select Problem-set). This button 
allows you to see all existing problem sets, and select the one to add new problems into. Figure 33 
shows the state of the problem editor after this button is clicked. All defined problem sets are 
displayed in a table. To select a problem set, click the on the appropriate line in this table. After the 
selection, the Problem editor will show the name of the selected problem set at the top of the page.  

 

Figure 33. The selection of a problem set 

3.5.2. Adding problems 

The interface for entering problems and solutions is similar to the default student interface (i.e. HTML 
code generated by ASPIRE from the domain definition). To generate this interface, ASPIRE-Author 
uses the previously specified problem/solution structures. Therefore, when the author starts adding the 
first problem for the domain, the Problem Editor provides the author with the necessary interface 
widgets, based on the problem structure, and expects the author to populate them.  

When the author clicks the Add a new problem button, ASPIRE will show the updated screen, as in 
Figure 34. There are several general problem features to specify, shown in the Problem’s attributes 
area. The unique problem number is generated automatically by the system (1 in this case, as the 
author is adding the first problem for the chosen problem set). The author may specify a name for the 
problem, which is optional. If the problem name is specified, it will be shown to students together with 
the problem number; otherwise, students will only see the problem number.  



 31 

 

Figure 34. Adding a new problem 
 
The author must specify the problem difficulty, which ranges from 1 (the simplest problems) to 9 (for 
most complex problems). To specify the difficulty level, the author can use the slider, or enter the 
desired number into the text box. If the text box is used to enter the difficulty number, the author needs 
to click the Update button for the difficulty to be updated on the slider shown.  

Then the author needs to specify the task the student is to perform. As discussed in Section 3.4, in 
some domains all problems will have the same general description of what the task is: e.g., in a 
language tutor, this description might be: “Turn the following verb into a noun,” and the student is 
given a series of verbs to work on. On the other hand, for certain problem sets, there is no such general 
description, and every problem will have distinct instructions. The author specifies whether there is 
such a general description for the problem set as well as any additional components for the problems 
(e.g. a diagram) in phase 3, and this information is available within the domain model.  

To specify the problem statement, click the Edit general statement button. Figure 35 shows the 
modified interface. Type the problem statement, and then click the Save button. Once the problem 
statement is specified, it will appear automatically for all future problems in the same problem set.  

 

Figure 35. Adding a problem statement 



 32 

Next, it is necessary to add the problem itself. Figure 36 shows the author adding a problem to the 
Fractions domain.  

 

Figure 36. Adding a fraction addition problem 

After specifying the problem text, the author also needs to specify the problem-specific components, if 
any exist. In the examples used so far in this manual, problems contained no components. Therefore, 
we now introduce an example instructional domain in which problems contain components. Figure 37 
shows the screenshot of the Problem Structure Editor, showing the author defining the problem 
structure for the NORMIT domain. In this domain, students learn how to normalize relations. Each 
problem contains the task requirement, and a set of three components: the relation name, a list of 
attributes belonging to a relation, and a set of functional dependencies that exist in that relation.  

 

Figure 37. Specifying the structure of problems with three components 

When the author starts adding problems for this domain, he/she will need to specify the mandatory 
elements of problems (problem name, difficulty and problem statement), and then additionally specify 
the problem-specific components, as illustrated in Figure 38. The author is able to type in the textual 



 33 

components in the text boxes provided. There are no graphical components in this instructional 
domain. To add a graphical component, the author needs to browse for or type in the image's URL and 
then press the Upload button, which will upload the image to the server to be stored along with the 
other specifications in the domain model. 

Finally, it is necessary to click the Save button to store the problem.  

 

 

Figure 38. Adding problem-specific components 

As discussed in Section 3.1, in some instructional domains it might be necessary to specify problem-
specific instructions for any problem-solving steps. When specifying the domain structure, the author 
may tick the Problem Specific Instruction box for the appropriate steps (see Figure 5). As the result of 
this action, the author would be asked to specify the problem-specific instructions for the selected 
steps, as illustrated in Figure 39. For the domain illustrated in this figure, the author requested 
problem-specific instruction for the Equation step. The author can add those instructions in the text 
box provided. The instruction will be given to the student when working on the appropriate step.  



 34 

 

Figure 39. Adding problem-specific instructions for a step 
 

3.5.3. Adding solutions 

After saving the problem, the author can add one or more solutions for it. Figure 40 shows the state of 
the interface after the problem has been saved. Similar to adding and selecting problems, the author 
can either ask for a new solution to be added, or select one of the previously specified solutions to 
modify. Solutions can be selected from the drop-down menu, to either view or modify.  

 

Figure 40. Adding a solution 



 35 

The View all solutions for this problem button will show a pop-up window with all the solutions. In 
the pop-up window, the author is able to nominate one solution to be the ideal solution (i.e. the 
preferred solution for the problem). The ideal solution is used by ASPIRE-Tutor when students 
request to see the Full Solution of a problem. By default, the first entered solution is the ideal solution. 
Figure 41 shows a situation when three solutions have been added for a problem, and the author can 
nominate one of them to be the ideal solution. (Please note that in the fractions domain there is only 
one ideal solution per problem. The goal of Figure 41 is to show how the ideal solution can be 
specified).  

 

Figure 41. Specifying the ideal solution 

When the author clicks the Add a new solution button, the Problem Editor displays the interface for 
entering a new solution, as illustrated in Figure 42. For procedural domains, when there are multiple 
steps for solving a problem, the solution workspace allows the author to enter all the steps 
simultaneously, as opposed to navigating through the steps one at a time as the students would. This 
eliminates the navigation efforts needed between steps, making it easier for the author to add and 
inspect the full solution for a problem. Each step is displayed along with its name and description that 
the students would see, and are separated by borders to make a clear distinction between steps. The 
author needs to specify the solution components for each problem solving step. Once the author is 
satisfied with the solution, it can be saved by clicking on the Save solution button.  



 36 

 

Figure 42. Entering a solution to problem 2 

The author may choose to enter problems first and then add their solutions at a later time. The Problem 
Editor shows the problem number in red if there are no solutions specified for that problem yet. 

As shown in Figures 40-42, the author is also able to edit or delete any problem previously entered by 
clicking on the Edit or Delete buttons respectively. Deleting a problem, however, will also delete all of 
its solutions at the same time.  

Solutions can also be deleted independently of the problem. Figure 43 shows a situation when the 
author has selected solution 4 for problem 1. To delete only this solution and keep the other solutions 
for the same problem, the author clicks the Delete solution button.  



 37 

 

Figure 43. Deleting a solution 
 

3.5.4. Re-arranging problems 

The author can see all the problems in the current problem set by clicking the View all problems 
button, which opens a new window, as shown in Figure 44. As the results, the new pop-up window 
shows the ids, names and difficulty levels of all problems. Clicking on the problem id will display the 
problem in the main window along with the options to edit or delete the selected problem.  

 

Figure 44. Viewing problems 

The problems will be shown initially in the order in which they have been specified. However, the 
author can modify the order of problems to be presented to students. To change the order of problems, 



 38 

the author needs to select the problems to move upwards by ticking the boxes at the beginning of 
corresponding rows, and then click the ^ button as many times as necessary.  

 

3.6. Generating syntactic constraints 

Once when the author finishes entering problems and solutions, constraints can be generated. 
Syntactic constraints check the student's solution for syntax errors. These constraints are generated 
automatically by ASPIRE-Author from the domain ontology. All restrictions specified on domain 
concepts and their slots (such as minimal/maximal values, types of slots and restrictions on 
relationships) are translated into syntax constraints. Additionally, for procedural domains ASPIRE-
Author also defines constraints that make sure that the student has completed all previous problem 
steps before attempting the current step. We do not provide explanation of how syntactic constraints 
are generated here - the interested reader is referred to [Suraweera, Mitrovic & Martin, 2005; Mitrovic 
et al., 2006, Suraweera, Mitrovic & Martin, 2007]. It is sufficient to know that if the student's solution 
violates a constraint, the intelligent tutoring system will inform the students that there is an error in 
their solution. In that case, the student might also be given some feedback, corresponding to a message 
that is attached to the constraint.  

The Syntax constraints tab allows the author to ask for syntactic constraints to be generated. At the top 
of the page (Figure 45) there is a Generate constraints button. When the author clicks this button, 
ASPIRE-Author will analyze the domain ontology and generate the corresponding syntax constraints. 
To save the generated constraints, click the Save button at the bottom of the page.  

 

Figure 45. The initial state of the Syntax Constraint page 

Figure 46 illustrates syntactic constraints generated for the fractions domain. The constraints are 
arranged in groups corresponding to domain concepts they have been generated from. The figure 
shows two concepts: LCD and Fraction. LCD (the lowest common denominator) is shown first, as this 
is the first step the student has to specify the answer to. There are two constraints generated for this 
concept. Each constraint consists of two conditions (relevance and satisfaction condition) followed by 
two feedback messages. The two feedback messages will be shown to the student one at a time when 
the constraint is violated, and the student asks for more feedback. These feedback messages are 
automatically generated by ASPIRE; however, the author can modify them to make them more useful 
for the student. 

The tick box at the beginning of each constraint allows the constraint to be selected. In order to delete 
one or more constraints, they need to be selected first, and then the Delete button at the bottom of the 
page needs to be clicked. 

At the end of a group of constraints for each concept from the ontology, there is the Add Constraint 
button. This constraint allows developers to add new constraints, which are manually defined. Authors 
are not allowed to add/modify constraints. 



 39 

 

Figure 46. Generated syntactic constraints 
 

3.7. Generating semantic constraints 

Semantic constraints are generated on the basis of problems and their solutions that the author has 
specified. Please note that for valid semantic constraints to be generated, ASPIRE needs multiple 
problems and their solutions. Also, note that in domains where multiple solutions exist, they need to 
be provided by the author, to guarantee a good domain model. In contrast to syntactic constraints, 
these constraints do not check for syntax errors. Semantic constraints look for semantic errors in the 
student solution - these are errors that are specific to the problem the student is attempting to solve. 
We do not provide explanation of how semantic constraints are generated here - the interested reader 
is referred to [Suraweera, Mitrovic & Martin, 2005; Mitrovic et al., 2006, Suraweera, Mitrovic & 
Martin, 2007].  

The Semantic constraints tab allows the author to ask for semantic constraints to be generated. This 
tab is only available when the author has specified some problems and their solutions. At the top of the 
page (Figure 47) there is the Generate constraints button. When the author clicks this button, 
ASPIRE-Author will analyze the specified problems and their solutions, and generate the 
corresponding semantic constraints. To save the generated constraints, click the Save button at the 
bottom of the page.  



 40 

 

Figure 47. Generating semantic constraints 
 

3.8. Deploying the tutoring systems 

Once the author has completed all the authoring steps, he/she may want to see the tutoring system 
running. This allows the author to interact with the tutoring system, solving problems and receiving 
feedback in a manner similar to students. The task of starting a tutoring system (to run on ASPIRE-
TUTOR) is called deployment. 
 

 
Figure 48. Deploying a domain 

Clicking the Deployment tab will initiate a number of checks on the domain to test whether the 
information supplied by the author is consistent and whether the domain model is complete. Figure 48 
shows a screenshot of the deployment page of a domain where ASPIRE has not found any 
inconsistencies. In such cases, the author can simply click on the Deploy Domain button. After 
clicking this button, a success message is displayed if the domain was deployed successfully (Figure 
49). A summary of the deployed domain is also shown. 

The author can then try the tutoring system on ASPIRE-Tutor. Click the ASPIRE-Tutor link at the 
bottom of the page, which will take you to ASPIRE-Tutor. The new tutoring system will be listed on 
the My Domains tab. 



 41 

 
Figure 49. Successful deployment of a domain 

Figure 50 shows an example of a domain where ASPIRE is warning the author that the domain 
ontology was modified after the constraints were generated. This indicates that the author has 
modified the ontology after generating constraints. The warnings should only be used as a guide. 
Therefore, the author has to decide whether to deploy the domain with the warnings or re-generate the 
constraints.  
 
 

 
Figure 50. The Deployment page with warnings 

During the domain testing procedure ASPIRE may identify errors in the domain that would result in 
an incomplete tutoring system. ASPIRE does not allow deployment of domains with errors. In such 
cases, ASPIRE will display an error message that says the domain cannot be deployed. Figure 51 
contains an example of a domain that contains a problem with no solutions. ASPIRE does not allow 
such domains to be deployed. 

 

Figure 51. Domain with errors 

 



 42 

3.9. Additional Pages for Developers 

 
Several of the tabs in ASPIRE-Author (Domain Functions, Test constraints and Logs) are only 
available to developers. We do not describe them in this manual. Information applicable only to 
developers is available in a separate document3 from the ICTG group. See Section 4.5 for a discussion 
of the developer user type in ASPIRE. 
 

 
 
4. ASPIRE-Tutor 

As explained previously (see Figure 1), ASPIRE-Tutor is the tutoring server. It delivers all the tutoring 
systems developed in ASPIRE-Author to users. The architecture of ASPIRE-Tutor is illustrated in 
Figure 52. ASPIRE-Tutor consists of a set of modules, with each module having specific 
responsibilities in the serving of intelligent tutoring systems. This document provides a very abstract 
discussion of the functionality provided by ASPIRE-Tutor as the understanding of internal operations 
is not required for authoring new systems in ASPIRE. For detailed discussion on the design and 
functionality of ASPIRE, please see [Mitrovic et al., 2006].  

The student accesses an intelligent tutoring system served by ASPIRE through a Web browser. Every 
action performed by the student would be sent to the Session Manager, which passes the appropriate 
requests to the Pedagogical Module. The Session Manager thus manages the flow of control of the 
interaction.  

The Pedagogical Module decides what actions to take to fulfill the request, and does so by sending 
appropriate requests to the other modules, i.e. any/all of the Diagnostic Module, Domain Manager, 
Student Modeller, Log Manager and User Manager. The Pedagogical Module thus manages the 
pedagogical decisions that determine what the response to each request will be.  

Each request to a module results in a status and optional data being returned to the Pedagogical 
Module. In addition, the functional modules may access and/or update data objects, e.g. student model, 
domain model, logs, which are stored in the Allegro Cache database. The various components of the 
model may also be updated. The Pedagogical Module returns the final status and data to the Session 
Manager. The Session Manager organises the result to be returned to the interface, by packaging up a 
response and/or indicating what interface object should be presented next.  

The Diagnostic Module analyses students' solutions, and identifies any mistakes students made. In 
order to be able to perform this task, the Diagnostic Module needs the services of the Domain 
Manager, the component that is in charge of all knowledge bases (shown as domain models in Figure 
52) developed for various intelligent tutoring systems. On the basis of the diagnosis performed by the 
Diagnostic Module, the Student Modeller updates the student model, i.e. the system's view of the 
student's knowledge. The student model is used to adapt instructional actions to meet the needs and 
abilities of each individual student.  

All actions students perform in ASPIRE are logged, and the Log Manager is responsible for 
maintaining the logs. Finally the User Manager is the component which maintains user information, 
and makes sure that only authorized people can access ASPIRE and various intelligent tutoring 
systems defined within it. There are several types of users in ASPIRE: students, teachers, 
administrators, developers and authors. Each group of users has specific privileges and rights in the 

                                                
3 Please email Tanja.mitrovic@canterbury.ac.nz in order to get developer’s documentation  



 43 

system, and can access different parts of the system. User Manager makes sure that users can access 
the part of ASPIRE they need.  

 

Figure 52. The architecture of ASPIRE-Tutor 
 

4.1. Logging in to ASPIRE-Tutor 

As discussed previously (see Section 2), to be able to log into ASPIRE, you need to have a valid user 
account. Once when the user specifies all the necessary information, the home page will be shown. 
There are various types of users in ASPIRE, and the home page displayed after logging in will depend 
on the type of the account used. The role of authors has already been discussed in detail in Section 3 of 
this document. The following sections explain the roles and functionality available to administrators, 
teachers and students.  

4.2. Administrator 

An administrator is a person who is responsible for maintaining ASPIRE, controlling the deployment 
of new tutoring systems, and maintaining user accounts. Once when an administrator logs in, he/she 
will be taken to the administrator home page, shown in Figure 53. The home page provides 
information about all sessions currently running in ASPIRE-Tutor. Please note that Figure 53 shows 
three running sessions. For each session, the administrator will be shown the session id, the id and the 
user code of the corresponding user, the type of the session, starting time and duration. Information 
listed under Connection data includes the IP number of the server, and the IP number of the machine 
the administrator is using.  



 44 

 

Figure 53. The administrator home page 

At the top of the home page, there is a set of tabs for various functions that the administrator can 
perform. The same tabs appear on all pages that are available to administrators. The Home tab brings 
the administrator back to this home page.  

The Users tab takes us to the User Management page, which consists of three parts. The top part of the 
page (shown in Figure 54) allows the administrator to add new users (one at a time), by specifying the 
information about the user. The middle part (Figure 55) allows the administrator to add multiple users 
at once, so that all of them will have student accounts, and will have the same initial password and the 
same affiliation. The bottom part allows the administrator to retrieve information about existing 
accounts. The administrator can search for all accounts for a specific affiliation, or search for a 
specific account. Figure 56 shows that part of the page, after the administrator has searched for a 
specific user. The administrator can change the information about a particular user by clicking the edit 
link, or delete the user account. The page also shows the total number of accounts created in ASPIRE. 



 45 

In order to create a new user, the administrator has to provide a user code, the full name of the person, 
his/her affiliation (selected from the list of options), the role of the user (also selected from the drop-
down list). Then it is necessary to specify a password for the user (and confirm it by entering the same 
password for the second time), followed by the user's email. A password must be longer than 4 
characters. Each user code must be unique within the affiliation it is related to.  

 

 

Figure 54. The User Management page 



 46 

  

 

Figure 55. Adding multiple users at once 

The Affiliations tab allows the administrator to manage affiliations. Figure 57 shows the screenshot of 
this page. The administrator can add a new affiliation (and its description), and view all affiliations 
previously defined. 

 



 47 

 

Figure 56. Retrieving information about existing users 

 

 

Figure 57. The Affiliations page 

Figure 58 shows the ITS management page, which allows the administrator to manage the tutoring 
systems served by ASPIRE-Tutor. The top part of this page allows the administrator to deploy a new 
domain, by selecting it from the drop-down menu.  

 



 48 

The bottom part of this page shows the list of deployed domains (i.e. the intelligent tutoring systems 
that are currently available in ASPIRE). For each domain (identified by its name), the page shows the 
status. In Figure 58, there are several domains whose status is started, which means that those systems 
are available to students. When a domain is initially uploaded to ASPIRE-Tutor, its status is stopped, 
which means that the domain is available, but has not been used by any students yet. The Manage link 
provides the administrator with more information about the domain, such as the number of users 
currently using that domain. The administrator can stop the tutor using the Manage link. 

 

Figure 58. The ITS Management page 

 

The Logs page (Figure 59) shows the information about the user sessions. The administrator may 
specify the types of sessions he/she is interested in: all sessions, or just sessions of users who are 
currently logged in. For each selected user, the page shows the user code and affiliation, as well as the 
start/end times, the session length and whether the user is currently logged in. The administrator can 
also get more information about a session by clicking the more info link. 

 



 49 

 

Figure 59.  The Logs page 

The Authoring tab allows the administrator to switch to ASPIRE-Author (discussed in Section 3). 

The Groups page, shown in Figure 60, allows the administrator to add a group, and modify existing 
groups. This functionality is primarily the responsibility of teachers, but administrators also have the 
privileges to work with groups. A group is a collection of student accounts (i.e. a class) who are 
allowed to use one or more instructional domain. To add a new group, the administrator has to give it 
a unique name, add an optional description, and specify the affiliation. The administrator can also 
modify existing groups, by adding/deleting users, adding/deleting domains, and view information 
about users belonging to the group. See Section 4.3.1 for more information. 

 

Figure 60. The Group Management page 

 



 50 

The My Domains page provides information about available domains. The My Account page allows 
the administrator to modify his/her profile. The administrator's own user code and affiliation will be 
shown. The administrator can change these two, as well as change the password and email. 

See Section 4.3.5 for more information about the Request Action tab. To log out from ASPIRE, click 
the Logout link at the bottom of the page, or the Logout tab.  

4.3. Teacher 

The role of the teacher is to set up access to the tutoring systems for various groups of students. The 
teacher may set up various parameters, defining how the student will interact with the target 
instructional system, and will also specify groups of students. A group of students would have exactly 
the same experience while working with the system.  

 

Figure 61. The Teacher Home Page 

Once when a teacher logs in, he/she will be taken to the home page shown in Figure 61. The six tabs at 
the top of this page are shown on all pages available to teachers. The My Account tab brings up a page 
which allows the teacher to modify his/her own profile, and the My Domains tab allows the teachers to 
see the instructional domain he/she has access to (as discussed in the previous section for 
administrator). The Home tab brings you back to this page.  

4.3.1. Group Management 

The Groups tab displays the page shown in Figure 60. As specified in Section 4.2, the Groups page 
allows the teacher to add a group, and modify existing groups. A group is a collection of student 
accounts (i.e. a class) who are allowed to use one or more instructional domains.  

To add a new group, the teacher needs to specify the group name, description and affiliation (selected 
from the drop-down list). The group name must be unique within affiliation, and must be at least five 
characters long. When done, click the Save button. The Reset button clears all the fields.  

Existing groups are shown in the bottom part of the page. For each group, there is a set of links that 
can be used to edit/delete the group, view users assigned to the group, assign students to the group or 
set instructional domains for a group.  

Figure 62 shows the page for assigning users to groups. The top part of this page shows users who are 
currently assigned to the chosen group. Besides each user code, there is a tick box which can be used 



 51 

to select the account to me removed from the group (by clicking the Remove Selected Users From 
Group button). 

 

Figure 62. The Group Assignment Page 

The bottom part of this page allows the teacher to add new students to the group. To do that, the 
teacher needs to search for the account by specifying the user code, or to ask for all accounts within a 
specific affiliation. The page then shows all the retrieved accounts, and the teacher can ask for one or 
more of them to be added to the group.  

4.3.2. Assigning Domains to Groups 

When a group is created, the teacher needs to specify the tutoring system(s) the group will have access 
to. To do that, click the Set Domains link from the Group Management page (Figure 60). ASPIRE will 
then show the Set Domains page (Figure 63). At the top of the page, there is a View/Assign Users link, 
which allows the teacher to view the students in the group. Next, the page shows a menu containing all 
domains, from which the teacher can select a new domain and assign it to the group. 



 52 

 

Figure 63. The Set Domains Page 

The bottom part of the page shows all domains have been allocated to the group. The group illustrated 
in Figure 63 has no allocated domains. The teacher then selects the name of the domain (e.g. Capital 
Investment Decision), which then requires the teacher to specify how the chosen domain will be used. 
In ASPIRE, this specification is known as the pedagogical settings, and is explained in the following 
section.  

After allocation the Capital Investment Decision domain to this group, the resulting state of the Set 
domains page is shown in Figure 64. The bottom part of the page now shows the domain, with two a 
related Unassign Domain link, which can be used to remove the domain from the group; after that, the 
students in the group will not be able to access that domain. The 
Assign Pedagogical Settings to Students link (discussed in Section 4.3.4) allows the teacher to specify 
the pedagogical settings, that is, to tune the behaviour of the tutoring system for the specific group. 
The teacher can also define a new pedagogical setting by clicking on the corresponding link. The 
definition of pedagogical setting is specified in the following section. Finally, ASPIRE shows the 
pedagogical settings the teacher defined for this domain previously (ACCT101-settings), with the Edit 
and Delete links.  

 



 53 

 

Figure 64. The modified Set Domains Page 
 
 

4.3.3. Specifying Pedagogical Settings 

The teacher needs to specify the pedagogical settings for each domain assigned to a group. The 
pedagogical settings page will appear automatically after a domain has been added to a group (as 
discussed in the previous section), or can be defined/modifed at a later time (by clicking the Define 
New Pedagogical Setting link shown in Figure 64). ASPIRE-Tutor will then open a new page, 
illustrated in Figure 65.  

The Pedagogical Setting (PS) is a set of parameters used to specify fine details of the options students 
will have when they work in the corresponding domain. For each domain, the teacher needs to specify 
at least one set of pedagogical settings.  

The Define Pedagogical Setting page (Figure 65) requires the teacher to specify the name for the PS 
first (note that there might be multiple PSs for the same domain for one group). Each PS must have a 
unique name. The teacher needs to specify the problem selection strategies that will be available to 
students. There needs to be at least one problem selection strategy specified. ASPIRE-Tutor starts with 
some default options, which can be modified. There are two groups of problem-selection strategies. In 
the first group (Automatic Selection), there are two options. The Next Problem option means that the 
student will get as a new problem the problem that immediately follows the current problem (please 
note that the order of problems is specified by the author). The System's Choice option is a problem-
selection strategy which uses the student model: ASPIRE will analyze the student's knowledge at the 
time, and select a problem at the appropriate level of complexity. At the moment, there is only one 
problem-selection strategy available of this kind, but in the future others will be added.  



 54 

 

Figure 65. Specifying pedagogical settings 

The second group of problem-selection strategies involves the student in choosing a problem to work 
on next. The From The List option means that the student will be given a list of problems to select 
from . The Based On A Concept option means that the student will be given a list of domain concepts, 
and he/she will select a concept to practise. ASPIRE will then select a problem of the appropriate 
complexity based on the chosen domain concept.  

Next, the teacher needs to specify the levels of feedback given to students. There are seven feedback 
levels to choose from, and by default, they are all available:  

• Quick Check: this level of feedback provides minimal information to the student. Once when 
the student submits a solution (and this level of feedback is selected), the student will only be 
told whether his/her solution is correct or not.  

• Error Flag: at this feedback level, the student is told, for incorrect solutions, what part of the 
solution is wrong;  

• Hint: for this level, the student is given feedback on the first violated constraint;  



 55 

• Detailed Hint: the student is given the detailed message associated with the first violated 
constraint;  

• All Errors: the student is given hint messages for all violated constraints;  
• Show Solution: the complete solution to the current problem is shown to the student.  

The default feedback-presentation strategy in ASPIRE is to start from Positive/Negative on the first 
submission, and then increase the level for each subsequent submission until the Detailed Hint level is 
reached, and then stay at that level for all later submissions. However, the student has the option to ask 
for a specific level of feedback on each submission.  

The teacher can disable some feedback levels, if appropriate. The teacher is also given an opportunity 
to modify the default feedback-presentation strategy. There is a drop-down box labelled 
Level to stop at (for automatic level increase); the teacher can modify the default level (Detailed 
Hint) by selecting another level from the list. The teacher can also specify the maximum number of 
feedback messages to show to the student at the All Errors level. The default value for this option is 
zero, which means that all feedback messages will be shown, i.e. as many hints as there are errors 
(violated constraints). The default option for full solution is that the student can request it whenever 
they want (default value of zero). The teacher can, however, specify the minimal number of 
submissions the student must make before he/she will be allowed to see the full solution.  

When showing Positive/Negative Feedback, ASPIRE will, by default, show the total number of errors. 
The teacher can modify this default behaviour by requiring that the student be only told that there are 
some errors in his/her solution.  

 

4.3.4. Assigning Pedagogical Settings to Students 

If there is more than one PS defined for a domain, it is necessary to assign them to students within the 
group. Figure 66 shows two pedagogical settings defined for the Capital Investment Decision domain.  



 56 

 

Figure 66. A group with two sets of pedagogical settings 

The teacher then needs to allocate pedagogical setting to each student in the group. To achieve that, 
the teacher clicks the Assign Pedagogical Settings to Students link, which shows the page in Figure 67.  



 57 

 

Figure 67. Assigning pedagogical settings to students 

The assignment can be done manually, in which case the teacher needs to select a PS for each 
individual student by selecting one of the radio buttons. The assignment can also be done in a random 
fashion - to achieve that, the teacher click the Randomize button, the effect of which is shown in 
Figure 68.  



 58 

 

Figure 68. Random assignment of pedagogical settings to students 
 
The View Student Model link allows the teacher to see statistics about the student’s knowledge of the 
instructional domain. The teacher will see the list of problems the students has solved correctly, and 
also statistics about constraint use.  
 
 

4.3.5. Requesting action 

The teacher (and other types of users) may request actions to be taken within ASPIRE. This is 
supported through the Request Action tab, shown in Figure 69. The user may type the request, which 
will be emailed to administrators. 



 59 

 
Figure 69. The Request Action page 

 

4.4. Student 

When a student logs into ASPIRE, he/she will be taken to the student home page. Figure 70 shows an 
example of a student home page. The student who this page was created for has been granted access to 
one instructional domain. If there are several instructional domains a student has the right to access, 
the home page will show multiple links.  

At the top of the page, there are five tabs, which are available on all pages available to students. The 
Home tab brings the student back to this page. The My Domains tab allows the student to see all the 
domains he/she has access to. The Request Action tab was already discussed in Section 4.3.5. The My 
Account page allows the student to modify his/her profile. Use the Logout tab/link to terminate the 
session with ASPIRE.  



 60 

 

Figure 70. The Student Home Page 

 

When a student selects a domain (by clicking the appropriate link on the home page or on the My 
Domains page), he/she will be given the problem-solving interface for the chosen domain. Figure 71 
shows the problem-solving interface for the domain the student has selected.  

 

 

Figure 71. The problem-solving interface for an instructional domain 



 61 

4.5. Developer 

Developers have all the privileges of authors, with the additional privilege of being able to make 
changes to the domain model. A developer can add new constraints, as well as delete or modify 
constraints generated by ASPIRE (in the Syntax/Semantic Constraints tabs). The developer can also 
test the constraints (in the Test Constraints tab), as well as add/modify/delete domain-specific 
functions (in the Domain Function tab). 

The process of developing constraints is similar to programming; the developer is a person with 
significant experience in programming and knowledge engineering. The developer understands the 
constraint language used by ASPIRE, and must also have an excellent grasp of constraint evaluation 
within ASPIRE and Lisp, which is the programming language ASPIRE is based on. Within this 
manual, we do not present the details of constraint evaluation, constraint language and Lisp. The 
interested reader is referred to the developer documentation4. 

 

5. Conclusions 

This document illustrated authoring support provided by ASPIRE-Author, as well as the functionality 
of ASPIRE-Tutor, the deployment environment. ASPIRE is available freely on the Web4. The 
ASPIRE team would be grateful for any feedback on ASPIRE and this user manual. 

 

6. References 
 
1. Decker, S., Melnik, S., van Harmelen, F., Fensel, D., Klein, M., Broekstra, J., Erdmann, M., Horrocks, I. 

(2000) The Semantic Web: The Roles of XML and RDF. IEEE Internet Computing, 4(5), 63-74.  
2. Gruber, T.R. (1993) A Translation Approach to Portable Ontology Specification. Knowledge Acquisition, 5, 

199-200.  
3. Hendler, J. (2001) Agents and the Semantic Web. IEEE Intelligent Systems, 16(2), 30-37.  
4. Hendler, J. (2005) Knowledge is Power: a View from the Semantic Web. AI Magazine, 26(4), winter 2005, 

76-84.  
5. Mitrovic, A., Suraweera, P., Martin, B., Zakharov, K., Milik, N., Holland, J. (2006) Authoring constraint-

based tutors in ASPIRE. M. Ikeda, K. Ashley, and T.-W. Chan (Eds.) Proc. 8th Int. Conf. on Intelligent 
Tutoring Systems ITS 2006, LNCS 4053, pp. 41-50.  

6. Noy, N., McGuinness, D. (2001) Ontology Development 101: a Guide to Creating your First Ontology. 
Stanford Knowledge Systems Laboratory Technical Report KSL-01-05 and Stanford Medical Informatics 
Technical Report SMI-2001-0880.  

7. Suraweera, P., Mitrovic, A., Martin, B. (2005) A knowledge acquisition system for constraint-based 
intelligent tutoring systems. In: C-K Looi, G. McCalla, B. Bredeweg, J. Breuker (eds) Proc. Artificial 
Intelligence in Education  AIED 2005, IOS Press, pp. 638-645. 

8. Suraweera, P., Mitrovic, A., Martin, B. (2007) Constraint Authoring System: an empirical evaluation. R. 
Luckin, K. Koedinger, J. Greer (eds) Proc. 13th Int. Conf. Artificial Intelligence in Education AIED 2007, 
Los Angeles, 451-458. 

                                                
4 Please email Tanja.mitrovic@canterbury.ac.nz to obtain a user account for ASPIRE, and additional 
information. 



 62 

INDEX 
 
Abstract box, 17 
Add a component, 26 
Add a new affiliation, 48 
Add a new domain, 7 
Add a new group, 51 
Add a new problem button, 32 
Add a new solution button, 38 
Add a relationship, 21 
Add a slot, 17 
Add a step of a procedural task, 10 
Add Constraint button, 41 
Adding a user, 47 
Adding problems, 32 
Adding solutions, 36 
Administrator, 45 
Affiliations tab, 48 
Architecture of ASPIRE-Author, 9 
Arrow tool, 15 
ASPIRE Home page, 7 
ASPIRE-Author, 5 
ASPIRE-Tutor, 5 
Assigning users to groups, 53 
at least box, 19 
at most box, 19 
Authoring server. See ASPIRE-Author 
Authoring steps, 8, 9 
Authoring tab, 51 
Backup and Restore button, 12 
Boolean type, 19 
Choose applet button, 30 
Components of a repeatable step, 28 
Create a concept, 15 
Default student interface, 28 
Define Pedagogical Setting page, 56 
Delete solution button, 38 
Deleting a slot, 17 
Deleting a step of a procedural task, 11 
Deleting an existing domain, 8 
Deploy a domain, 49 
Deploy Domain button, 42 
Deployment, 42 
Deployment tab, 42 
Developers, 44 
Diagnostic Module, 44 
Display radio button, 31 
Domain Function, 64 
Domain Functions tab, 44 
Domain Manager, 44 

Domain page, 10 
Domain structure, 10 
Domain testing, 43 
Domain type, 10 
Edit general statement button, 33 
Element Count, 26 
Feedback levels, 57 
Finish tool, 15 
Float type, 18 
Free text box, 22, 25 
Generate constraints button, 40, 41 
Group, 51 
Group Management, 53 
Groups page, 51 
Groups tab, 53 
HTML interface, 28 
Ideal solution, 37 
Inheritance, 20 
Instructional domain, 7 
Integer type, 18 
Intelligent Tutoring Systems, 5 
is-a relationship, 15 
ITS management page, 49 
Lisp, 64 
Logging out, 8 
Login procedure, 6 
Logout tab/link, 62 
Logs page, 50 
Logs tab, 44 
Manage link, 50 
Modifying a slot, 17 
Multiple box, 18 
My Account page, 62 
My Account tab, 53 
My Domains page, 52 
My Domains tab, 53, 62 
New Page box, 11 
Next Problem option, 56 
Ontology, 13 
Ontology Workspace, 14 
Ontology Workspace drawing area, 15 
Openning a domain, 7 
Optional checkbox, 18 
Pedagogical Module, 44 
Pedagogical settings, 55 
Pedagogical Settings to Students link, 59 
Positive/Negative Feedback, 58 



 63 

Problem and Solution Representation 
page, 24 

Problem components, 25 
Problem difficulty, 33 
Problem Editor, 32 
Problem editor tab, 31 
Problem name, 32 
Problem selection strategies, 56 
Problem sets, 12 
Problem Specific Instruction box, 35 
Problem Specific Instructions box, 11 
Problem statement, 24 
Problem structure, 24 
Problem Structure tab, 24 
Problem’s attributes area, 32 
Problem-solving interface, 63 
Procedural domains, 10 
Property, 17 
Randomize button, 60 
Rectangle tool, 15 
Relationship, 17 
Remove Selected Users From Group 

button, 53 
Repeatable box, 11 
Request Action tab, 62 
Requesting actions, 61 
Reset button, 53 
Re-using components, 27 
Save button, 33 
Save solution button, 38 
Save structure button, 12, 26 
Save/Load a domain, 8 
Saving the ontology, 15 
Saving the problem, 36 
Select a problem set, 32 
Select Problem-set button, 32 
Selecting an applet, 31 
Selection box, 27 
Semantic constraints, 41 

Semantic constraints tab, 41 
Session Manager, 44 
Set Domains page, 54, 55 
Slot name, 17 
Slot type, 17 
Slots, 17 
Solution structure, 24, 25 
Sorting the problems, 39 
Specialisation/Generalisation relationship, 

14 
Specifying Pedagogical Settings, 56 
Specifying problem text, 34 
Starting a new ontology, 15 
starting a tutoring system. See Deployment 
String type, 18 
Student home page, 62 
Student Home page, 62 
Student Interface Builder, 28 
Student Modeller, 44 
Symbol type, 19 
Syntactic constraints, 40 
Syntax constraints tab, 40 
System's Choice option, 56 
Task requirement, 24 
Teacher, 52 
Teacher home page, 53 
Test Constraints tab, 44, 64 
Trash can tool, 15 
Tutoring server. See ASPIRE-Tutor 
Undo/Redo last action, 15 
Upload button, 35 
User Management page, 46 
User Manager, 45 
Users tab, 46 
View all problems button, 39 
View all solutions for this problem button, 

37 
View Student Model link, 61 
View/Assign Users link, 54 

 


